Further generalization, refinements of the Young inequality
نویسندگان
چکیده
منابع مشابه
Generalization of cyclic refinements of Jensen’s inequality by Fink’s identity
We generalize cyclic refinements of Jensen’s inequality from a convex function to a higher-order convex function by means of Lagrange–Green’s function and Fink’s identity. We formulate the monotonicity of the linear functionals obtained from these identities utilizing the theory of inequalities for n-convex functions at a point. New Grüssand Ostrowski-type bounds are found for identities associ...
متن کاملRefinements of Pinsker's inequality
Let V and D denote, respectively, total variation and divergence. We study lower bounds of D with V fixed. The theoretically best (i.e. largest) lower bound determines a function L = L(V ), Vajda’s tight lower bound, cf. Vajda, [?]. The main result is an exact parametrization of L. This leads to Taylor polynomials which are lower bounds for L, and thereby extensions of the classical Pinsker ine...
متن کاملRefinements of Generalized Hölder’s Inequality
In this paper, we present some refinements of a generalized Hölder’s inequality, which is due to Vasić and Pečarić. Mathematics subject classification (2010): Primary 26D15; Secondary 26D10.
متن کاملImprovements of Young inequality using the Kantorovich constant
Some improvements of Young inequality and its reverse for positive numbers with Kantorovich constant $K(t, 2)=frac{(1+t)^2}{4t}$ are given. Using these inequalities some operator inequalities and Hilbert-Schmidt norm versions for matrices are proved. In particular, it is shown that if $a, b$ are positive numbers and $0 leqslant nu leqslant 1,$ then for all integers $ kgeqsl...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Proyecciones (Antofagasta)
سال: 2021
ISSN: 0717-6279
DOI: 10.22199/issn.0717-6279-2021-4468