Fully Kernected Neural Networks
نویسندگان
چکیده
In this paper, we apply kernel methods to deep convolutional neural network (DCNN) improve its nonlinear ability. DCNNs have achieved significant improvement in many computer vision tasks. For an image classification task, the accuracy comes saturation when depth and width of are enough appropriate. The will not rise even by increasing width. We find that improving ability can break through accuracy. a DCNN, former layer is more inclined extract features latter classify features. Therefore, at last fully connected implicitly map higher-dimensional space so achieves better linear separability. Also, name as kernected networks (fully with methods). Our experiment result shows achieve higher faster convergence rate than baseline networks.
منابع مشابه
Fully Convolutional Neural Networks for Crowd Segmentation
In this paper, we propose a fast fully convolutional neural network (FCNN) for crowd segmentation. By replacing the fully connected layers in CNN with 1 × 1 convolution kernels, FCNN takes whole images as inputs and directly outputs segmentation maps by one pass of forward propagation. It has the property of translation invariance like patch-by-patch scanning but with much lower computation cos...
متن کاملUniversality of Fully-Connected Recurrent Neural Networks
It is shown from the universality of multi-layer neural networks that any discretetime or continuous-time dynamical system can be approximated by discrete-time or continuous-time recurrent neural networks, respectively.
متن کاملAttractors in fully asymmetric neural networks
The statistical properties of the length of the cycles and of the weights of the attraction basins in fully asymmetric neural networks (i.e. with completely uncorrelated synapses) are computed in the framework of the annealed approximation which we previously introduced for the study of Kauffman networks. Our results show that this model behaves essentially as a Random Map possessing a reversal...
متن کاملrodbar dam slope stability analysis using neural networks
در این تحقیق شبکه عصبی مصنوعی برای پیش بینی مقادیر ضریب اطمینان و فاکتور ایمنی بحرانی سدهای خاکی ناهمگن ضمن در نظر گرفتن تاثیر نیروی اینرسی زلزله ارائه شده است. ورودی های مدل شامل ارتفاع سد و زاویه شیب بالا دست، ضریب زلزله، ارتفاع آب، پارامترهای مقاومتی هسته و پوسته و خروجی های آن شامل ضریب اطمینان می شود. مهمترین پارامتر مورد نظر در تحلیل پایداری شیب، بدست آوردن فاکتور ایمنی است. در این تحقیق ...
2D-3D Fully Convolutional Neural Networks for Cardiac MR Segmentation
In this paper, we develop a 2D and 3D segmentation pipelines for fully automated cardiac MR image segmentation using Deep Convolutional Neural Networks (CNN). Our models are trained end-to-end from scratch using the ACD Challenge 2017 dataset comprising of 100 studies, each containing Cardiac MR images in End Diastole and End Systole phase. We show that both our segmentation models achieve near...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Mathematics
سال: 2023
ISSN: ['2314-4785', '2314-4629']
DOI: https://doi.org/10.1155/2023/1539436