Fully Dynamic (? +1)-Coloring in <i>O</i> (1) Update Time

نویسندگان

چکیده

The problem of (? +1)-vertex coloring a graph maximum degree ? has been extremely well studied over the years in various settings and models. Surprisingly, for dynamic setting, almost nothing was known until recently. In SODA’18, Bhattacharya, Chakrabarty, Henzinger Nanongkai devised randomized algorithm maintaining +1)-coloring with O (log ?) expected amortized update time. this article, we present an improved that achieves (1) time show bound holds not only expectation but also high probability. Our starting point is state-of-the-art maximal matching (Solomon, FOCS’16). We carefully build on approach Solomon, but, due to inherent differences between problems, need deviate significantly from it several crucial highly nontrivial points. 1

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Deterministic Fully Dynamic Approximate Vertex Cover and Fractional Matching in O(1) Amortized Update Time

We consider the problems of maintaining an approximate maximum matching and an approximate minimum vertex cover in a dynamic graph undergoing a sequence of edge insertions/deletions. Starting with the seminal work of Onak and Rubinfeld [STOC 2010], this problem has received significant attention in recent years. Very recently, extending the framework of Baswana, Gupta and Sen [FOCS 2011], Solom...

متن کامل

1 Mantaining Dynamic Matrices for Fully Dynamic

In this paper we introduce a general framework for casting fully dynamic transitive closure into the problem of reevaluating polynomials over matrices. With this technique, we improve the best known bounds for fully dynamic transitive closure. In particular, we devise a deterministic algorithm for general directed graphs that achieves O(n) amortized time for updates, while preserving unit worst...

متن کامل

dynamic coloring of graph

در این پایان نامه رنگ آمیزی دینامیکی یک گراف را بیان و مطالعه می کنیم. یک –kرنگ آمیزی سره ی رأسی گراف g را رنگ آمیزی دینامیکی می نامند اگر در همسایه های هر رأس v?v(g) با درجه ی حداقل 2، حداقل 2 رنگ متفاوت ظاهر شوند. کوچکترین عدد صحیح k، به طوری که g دارای –kرنگ آمیزی دینامیکی باشد را عدد رنگی دینامیکی g می نامند و آنرا با نماد ?_2 (g) نمایش می دهند. مونت گمری حدس زده است که تمام گراف های منتظم ...

15 صفحه اول

Fully Dynamic Maximal Independent Set with Sublinear Update Time

A maximal independent set (MIS) can be maintained in an evolving m-edge graph by simply recomputing it from scratch in O(m) time after each update. But can it be maintained in time sublinear in m in fully dynamic graphs? We answer this fundamental open question in the affirmative. We present a deterministic algorithm with amortized update time O(min{∆,m3/4}), where ∆ is a fixed bound on the max...

متن کامل

Fully Dynamic Spanners with Worst-Case Update Time

An α-spanner of a graph G is a subgraph H such that H preserves all distances of G within a factor of α. In this paper, we give fully dynamic algorithms for maintaining a spanner H of a graph G undergoing edge insertions and deletions with worst-case guarantees on the running time after each update. In particular, our algorithms maintain: • a 3-spanner with Õ(n1+1/2) edges with worst-case updat...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: ACM Transactions on Algorithms

سال: 2022

ISSN: ['1549-6333', '1549-6325']

DOI: https://doi.org/10.1145/3494539