Full Bayesian inference with hazard mixture models

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Full Bayesian inference with hazard mixture models

Bayesian nonparametric inferential procedures based on Markov chain Monte Carlo marginal methods typically yield point estimates in the form of posterior expectations. Though very useful and easy to implement in a variety of statistical problems, these methods may suffer from some limitations if used to estimate non-linear functionals of the posterior distribution. The main goal is to develop a...

متن کامل

A Computational Approach for Full Nonparametric Bayesian Inference Under Dirichlet Process Mixture Models

Widely used parametricgeneralizedlinearmodels are, unfortunately,a somewhat limited class of speciŽ cations. Nonparametric aspects are often introduced to enrich this class, resulting in semiparametricmodels. Focusingon single or k-sample problems,many classical nonparametricapproachesare limited to hypothesis testing.Those that allow estimation are limited to certain functionals of the underly...

متن کامل

Streaming Variational Inference for Bayesian Nonparametric Mixture Models

In theory, Bayesian nonparametric (BNP) models are well suited to streaming data scenarios due to their ability to adapt model complexity with the observed data. Unfortunately, such benefits have not been fully realized in practice; existing inference algorithms are either not applicable to streaming applications or not extensible to BNP models. For the special case of Dirichlet processes, stre...

متن کامل

Fast Bayesian Inference in Dirichlet Process Mixture Models.

There has been increasing interest in applying Bayesian nonparametric methods in large samples and high dimensions. As Markov chain Monte Carlo (MCMC) algorithms are often infeasible, there is a pressing need for much faster algorithms. This article proposes a fast approach for inference in Dirichlet process mixture (DPM) models. Viewing the partitioning of subjects into clusters as a model sel...

متن کامل

Supplemental Information: Streaming Variational Inference for Bayesian Nonparametric Mixture Models

where the inequality follows by Jensen’s inequality [1]. The approximation is tight when q̂(z1:n) and q̂(θ\k) approach Dirac measures. Eq. (6) is that of the standard mean field update for q̂(θk) [2]. Since the q(θk) distributions are unknown for all k, we could perform coordinate ascent and cycle through these updates for each of the θk given the other θ\k and q̂(z1:n). Conveniently, since the q̂(z...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Computational Statistics & Data Analysis

سال: 2016

ISSN: 0167-9473

DOI: 10.1016/j.csda.2014.12.003