Frustration-critical signed graphs
نویسندگان
چکیده
A signed graph (G,Σ) is a G together with set Σ⊆E(G) of negative edges. circuit positive if the product signs its edges positive. balanced all circuits are The frustration index l(G,Σ) minimum cardinality E⊆E(G) such that (G−E,Σ−E) balanced, and k-critical l(G,Σ)=k l(G−e,Σ−e)<k, for every e∈E(G). We study decomposition subdivision critical graphs completely determine t-critical graphs, t≤2. Critical characterized. then focus on non-decomposable graphs. In particular, we characterize S∗ not containing decomposable subgraph t≤k. prove consists cyclically 4-edge-connected projective-planar cubic Furthermore, construct k≥1.
منابع مشابه
Maximum Frustration in Bipartite Signed Graphs
A signed graph is a graph where each edge is labeled as either positive or negative. A circle is positive if the product of edge labels is positive. The frustration index is the least number of edges that need to be removed so that every remaining circle is positive. The maximum frustration of a graph is the maximum frustration index over all possible sign labellings. We prove two results about...
متن کاملFrustration vs . Clusterability in Two - Mode Signed Networks ( Signed Bipartite Graphs )
Mrvar and Doreian recently defined a notion of bipartite clustering in bipartite signed graphs that gives a measure of imbalance of the signed graph, different from previous measures (the “frustration index” or “line index of balance”, l, and Davis’s clusterability). A biclustering of a bipartite signed graph is a pair (π1, π2) of partitions of the two color classes; the sets of the partitions ...
متن کاملMore Equienergetic Signed Graphs
The energy of signed graph is the sum of the absolute values of the eigenvalues of its adjacency matrix. Two signed graphs are said to be equienergetic if they have same energy. In the literature the construction of equienergetic signed graphs are reported. In this paper we obtain the characteristic polynomial and energy of the join of two signed graphs and thereby we give another construction ...
متن کاملWeak signed Roman domination in graphs
A {em weak signed Roman dominating function} (WSRDF) of a graph $G$ with vertex set $V(G)$ is defined as afunction $f:V(G)rightarrow{-1,1,2}$ having the property that $sum_{xin N[v]}f(x)ge 1$ for each $vin V(G)$, where $N[v]$ is theclosed neighborhood of $v$. The weight of a WSRDF is the sum of its function values over all vertices.The weak signed Roman domination number of $G...
متن کاملWeak signed Roman k-domination in graphs
Let $kge 1$ be an integer, and let $G$ be a finite and simple graph with vertex set $V(G)$.A weak signed Roman $k$-dominating function (WSRkDF) on a graph $G$ is a function$f:V(G)rightarrow{-1,1,2}$ satisfying the conditions that $sum_{xin N[v]}f(x)ge k$ for eachvertex $vin V(G)$, where $N[v]$ is the closed neighborhood of $v$. The weight of a WSRkDF $f$ is$w(f)=sum_{vin V(G)}f(v)$. The weak si...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Discrete Applied Mathematics
سال: 2022
ISSN: ['1872-6771', '0166-218X']
DOI: https://doi.org/10.1016/j.dam.2022.08.010