From Vlasov-Maxwell-Boltzmann system to two-fluid incompressible Navier-Stokes-Fourier-Maxwell system with Ohm’s law: convergence for classical solutions

نویسندگان

چکیده

For the two-species Vlasov-Maxwell-Boltzmann (VMB) system with scaling under which moments of fluctuations to global Maxwellians formally converge two-fluid incompressible Navier-Stokes-Fourier-Maxwell (NSFM) Ohm's law, we prove uniform estimates respect Knudsen number $\eps$ for fluctuations. As consequences, existence in time classical solutions VMB all $\eps \in (0,1]$ is established. Furthermore, convergence NSFM law rigorously justified. This limit was justified recent breakthrough Ars\'enio and Saint-Raymond \cite{Arsenio-SRM-2016} from renormalized dissipative viscous electro-magneto-hydrodynamics corresponding scaling. In this sense, our result gives a solution analogue \cite{Arsenio-SRM-2016}.

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

From the Boltzmann Equation to an Incompressible Navier–Stokes–Fourier System

We establish a Navier–Stokes–Fourier limit for solutions of the Boltzmann equation considered over any periodic spatial domain of dimension two or more. We do this for a broad class of collision kernels that relaxes the Grad small deflection cutoff condition for hard potentials and includes for the first time the case of soft potentials. Appropriately scaled families of DiPerna–Lions renormaliz...

متن کامل

Vlasov-maxwell-boltzmann Diffusive Limit

We study the diffusive expansion for solutions around Maxwellian equilibrium and in a periodic box to the Vlasov-Maxwell-Boltzmann system, the most fundamental model for an ensemble of charged particles. Such an expansion yields a set of dissipative new macroscopic PDE’s, the incompressible Vlasov-Navier-Stokes-Fourier system and its higher order corrections for describing a charged fluid, wher...

متن کامل

The Vlasov-maxwell-boltzmann System in the Whole Space

with initial conditions F±(0, x, v) = F0,±(x, v). Here F±(t, x, v) ≥ 0 are the number density functions for ions (+) and electrons (-) respectively at time t ≥ 0, position x = (x1, x2, x3) ∈ R and velocity v = (v1, v2, v3) ∈ R. The constants e± and m± are the magnitude of their charges and masses, and c is the speed of light. The self-consistent electromagnetic field [E(t, x), B(t, x)] in (1) i...

متن کامل

Global weak solutions to the relativistic Vlasov-Maxwell system revisited

In their seminal work [3], R. DiPerna and P.-L. Lions established the existence of global weak solutions to the Vlasov-Maxwell system. In the present notes we give a somewhat simplified proof of this result for the relativistic version of this system, the main purpose being to make this important result of kinetic theory more easily accessible to newcomers in the field. We show that the weak so...

متن کامل

Hamiltonian gyrokinetic Vlasov–Maxwell system

Article history: Received 25 June 2015 Accepted 26 June 2015 Available online 30 June 2015 Communicated by C.R. Doering

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Annals of PDE

سال: 2022

ISSN: ['2524-5317', '2199-2576']

DOI: https://doi.org/10.1007/s40818-022-00117-6