Frobenius integrability and Finsler metrizability for 2-dimensional sprays
نویسندگان
چکیده
منابع مشابه
The Euler-lagrange Pde and Finsler Metrizability
In this paper we investigate the following question: under what conditions can a second-order homogeneous ordinary differential equation (spray) be the geodesic equation of a Finsler space. We show that the EulerLagrange partial differential system on the energy function can be reduced to a first order system on this same function. In this way we are able to give effective necessary and suffici...
متن کاملFrobenius manifolds and algebraic integrability
We give a short review of Frobenius manifolds and algebraic integrability and study their intersection. The simplest case is the relation between the Frobenius manifold of simple singularities, which is almost dual to the integrable open Toda chain. New types of manifolds called extra special Kähler and special F -manifolds are introduced which capture the intersection.
متن کاملSemi-basic 1-forms and Courant Structure for Metrizability Problems
The metrizability of sprays, particularly symmetric linear connections, is studied in terms of semi-basic 1-forms using the tools developed by Bucataru and Dahl in [2]. We introduce a type of metrizability in relationship with the Finsler and projective metrizability. The Lagrangian corresponding to the Finsler metrizability as well as the Bucataru–Dahl characterization of Finsler and projectiv...
متن کامل2-dimensional Topological Quantum Field Theories and Frobenius Algebras
Category theory provides a more abstract and thus more general setting for considering the structure of mathematical objects. 2-dimensional quantum field theories arise in physics as objects that assign vector spaces to 1-manifolds and linear maps to 2-cobordisms. From a categorical perspective, we find that they are the same as commutative Frobenius algebras. Our main goal is to explain this e...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Differential Geometry and its Applications
سال: 2018
ISSN: 0926-2245
DOI: 10.1016/j.difgeo.2017.10.002