Frequency domain winding number and interaction effect on topological insulators
نویسندگان
چکیده
منابع مشابه
Topological insulators and Mott physics from the Hubbard interaction
We investigate the Hubbard model on the honeycomb lattice with intrinsic spin-orbit interactions as a paradigm for two-dimensional topological band insulators in the presence of interactions. Applying a combination of Hartree-Fock theory, slave-rotor techniques, and topological arguments, we show that the topological band insulating phase persists up to quite strong interactions. Then we apply ...
متن کاملTopological Insulators and Superconductors
We study theoretical properties of robust low energy electronic excitations associated with topological insulators and superconductors. The bulk materials are described by non-interacting single particle band Hamiltonians with a finite excitation gap. Their topological phases are classifed according to symmetries and dimensions, characterized by discrete bulk invariants, and correspond to topol...
متن کاملLarge-Chern-number quantum anomalous Hall effect in thin-film topological crystalline insulators.
We theoretically predict that thin-film topological crystalline insulators can host various quantum anomalous Hall phases when doped by ferromagnetically ordered dopants. Any Chern number between ±4 can, in principle, be reached as a result of the interplay between (a) the induced Zeeman field, depending on the magnetic doping concentration, (b) the structural distortion, either intrinsic or in...
متن کاملInteraction-induced criticality in Z(2) topological insulators.
We study interaction effects in topological insulators with strong spin-orbit coupling. We find that the interplay of nontrivial topology and Coulomb repulsion induces a novel critical state on the surface of a three-dimensional topological insulator. Remarkably, this interaction-induced criticality, characterized by a universal value of conductivity, emerges without any adjustable parameters. ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Physical Review B
سال: 2011
ISSN: 1098-0121,1550-235X
DOI: 10.1103/physrevb.84.205116