Freiman's theorem in an arbitrary abelian group

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Freiman’s Theorem in an Arbitrary Abelian Group

A famous result of Freiman describes the structure of finite sets A ⊆ Z with small doubling property. If |A + A| 6 K|A| then A is contained within a multidimensional arithmetic progression of dimension d(K) and size f(K)|A|. Here we prove an analogous statement valid for subsets of an arbitrary abelian group.

متن کامل

Codes Closed under Arbitrary Abelian Group of Permutations

Algebraic structure of codes over Fq , closed under arbitrary abelian group G of permutations with exponent relatively prime to q, called G-invariant codes, is investigated using a transform domain approach. In particular, this general approach unveils algebraic structure of quasicyclic codes, abelian codes, cyclic codes, and quasi-abelian codes with restriction on G to appropriate special case...

متن کامل

Perpendicularity in an Abelian Group

We give a set of axioms to establish a perpendicularity relation in anAbelian group and then study the existence of perpendicularities in (Z n , +) and (Q + , ⋅) and in certain other groups. Our approach provides a justification for the use of the symbol⊥ denoting relative primeness in number theory and extends the domain of this convention to some degree. Related to that, we also consider para...

متن کامل

An Eilenberg Theorem for Arbitrary Languages

In algebraic language theory one investigates formal languages by relating them to finite algebras. The most important result along these lines is Eilenberg’s celebrated variety theorem [7]: varieties of languages (classes of regular finite-word languages closed under boolean operations, derivatives and preimages of monoid morphisms) correspond bijectively to pseudovarieties of monoids (classes...

متن کامل

The Anosov Theorem for Infranilmanifolds with an Odd-order Abelian Holonomy Group

We prove that N( f )= |L( f )| for any continuous map f of a given infranilmanifold with Abelian holonomy group of odd order. This theorem is the analogue of a theorem of Anosov for continuous maps on nilmanifolds. We will also show that although their fundamental groups are solvable, the infranilmanifolds we consider are in general not solvmanifolds, and hence they cannot be treated using the ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of the London Mathematical Society

سال: 2007

ISSN: 0024-6107

DOI: 10.1112/jlms/jdl021