Free product on semihypergroups

نویسندگان

چکیده

In a previous paper [1], we initiated systematic study of semihypergroups and had thorough discussion about some important analytic algebraic objects associated to this class objects. paper, investigate free structures on the category semihypergroups. We show that natural product structure along with topology, although fails give for topological groups, works well vast non-trivial ‘pure’ containing most well-known examples including coset orbit spaces.

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

on semihypergroups and hypergroups

in this thesis, first the notion of weak mutual associativity (w.m.a.) and the necessary and sufficient condition for a $(l,gamma)$-associated hypersemigroup $(h, ast)$ derived from some family of $lesssim$-preordered semigroups to be a hypergroup, are given. second, by proving the fact that the concrete categories, semihypergroups and hypergroups have not free objects we will introduce t...

15 صفحه اول

On Transitive Soft Sets over Semihypergroups

The aim of this paper is to initiate and investigate new soft sets over semihypergroups, named special soft sets and transitive soft sets and denoted by SH and TH , respectively. It is shown that TH = SH if and only if β = β ∗. We also introduce the derived semihypergroup from a special soft set and study some properties of this class of semihypergroups.

متن کامل

On transitive soft sets over semihypergroups

The aim of this paper is to initiate and investigate new soft sets over semihypergroups, named special soft sets and transitive soft sets and denoted by $S_{H}$ and  $T_{H},$ respectively. It is shown that $T_{H}=S_{H}$ if and only if $beta=beta^{*}.$ We also introduce the derived semihypergroup from a special soft set and study some properties of this class of semihypergroups.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Semigroup Forum

سال: 2021

ISSN: ['0037-1912', '1432-2137']

DOI: https://doi.org/10.1007/s00233-020-10152-z