Fracture toughness testing methods for paper materials
نویسندگان
چکیده
منابع مشابه
On the fracture toughness of ferroelastic materials
The toughness enhancement due to domain switching near a steadily growing crack in a ferroelastic material is analyzed. The constitutive response of the material is taken to be characteristic of a polycrystalline sample assembled from randomly oriented tetragonal single crystal grains. The constitutive law accounts for the strain saturation, asymmetry in tension versus compression, Bauschinger ...
متن کاملOn the Fracture Toughness of Advanced Materials
S E On the Fracture Toughness of Advanced Materials A R C H By Maximilien E. Launey, and Robert O. Ritchie* N E W S Few engineering materials are limited by their strength; rather they are limited by their resistance to fracture or fracture toughness. It is not by accident that most critical structures, such as bridges, ships, nuclear pressure vessels and so forth, are manufactured from materia...
متن کاملComparison of two fracture toughness testing methods using a glass-infiltrated and a zirconia dental ceramic
PURPOSE The objective of this study was to compare the fracture toughness (KIc) obtained from the single edge V-notched beam (SEVNB) and the fractographic analysis (FTA) of a glass-infiltrated and a zirconia ceramic. MATERIALS AND METHODS For each material, ten bar-shaped specimens were prepared for the SEVNB method (3 mm × 4 mm × 25 mm) and the FTA method (2 mm × 4 mm × 25 mm). The starter V...
متن کاملFracture toughness of graphene.
Perfect graphene is believed to be the strongest material. However, the useful strength of large-area graphene with engineering relevance is usually determined by its fracture toughness, rather than the intrinsic strength that governs a uniform breaking of atomic bonds in perfect graphene. To date, the fracture toughness of graphene has not been measured. Here we report an in situ tensile testi...
متن کاملA Membrane Deflection Fracture Experiment to Investigate Fracture Toughness of Freestanding MEMS Materials
This paper presents a novel Membrane Deflection Fracture Experiment (MDFE) to investigate the fracture toughness of MEMS and other advanced materials in thin film form. It involves the stretching of freestanding thin-film membranes, in a fixed-fixed configuration, containing pre-existing cracks. The fracture behavior of ultrananocrystalline diamond (UNCD), a material developed at Argonne Nation...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Sen'i Gakkaishi
سال: 1997
ISSN: 0037-9875,1884-2259
DOI: 10.2115/fiber.53.10_p330