Fractional wave-diffusion equation with periodic conditions
نویسندگان
چکیده
منابع مشابه
Approximation of Fractional Diffusion-wave Equation
In this paper we consider the solution of the fractional differential equations. In particular, we consider the numerical solution of the fractional one dimensional diffusion-wave equation. Some improvements of computational algorithms are suggested. The considerations have been illustrated by examples.
متن کاملThe Wave Equation in Non-classic Cases: Non-self Adjoint with Non-local and Non-periodic Boundary Conditions
In this paper has been studied the wave equation in some non-classic cases. In the rst case boundary conditions are non-local and non-periodic. At that case the associated spectral problem is a self-adjoint problem and consequently the eigenvalues are real. But the second case the associated spectral problem is non-self-adjoint and consequently the eigenvalues are complex numbers,in which two ...
متن کاملSolutions to Time-Fractional Diffusion-Wave Equation in Cylindrical Coordinates
Nonaxisymmetric solutions to time-fractional diffusion-wave equation with a source term in cylindrical coordinates are obtained for an infinite medium. The solutions are found using the Laplace transform with respect to time t, the Hankel transform with respect to the radial coordinate r, the finite Fourier transform with respect to the angular coordinate φ, and the exponential Fourier transfor...
متن کاملFrom Newton’s Equation to Fractional Diffusion and Wave Equations
Fractional calculus represents a natural instrument to model nonlocal or long-range dependence phenomena either in space or time. The processes that involve different space and time scales appear in a wide range of contexts, from physics and chemistry to biology and engineering. In many of these problems, the dynamics of the system can be formulated in terms of fractional differential equations...
متن کاملGeneralized Boundary Conditions for the Time-Fractional Advection Diffusion Equation
The different kinds of boundary conditions for standard and fractional diffusion and advection diffusion equations are analyzed. Near the interface between two phases there arises a transition region which state differs from the state of contacting media owing to the different material particle interaction conditions. Particular emphasis has been placed on the conditions of nonperfect diffusive...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Mathematical Physics
سال: 2012
ISSN: 0022-2488,1089-7658
DOI: 10.1063/1.4769270