Fractional elliptic equations in nondivergence form: definition, applications and Harnack inequality
نویسندگان
چکیده
We define the fractional powers Ls=(−aij(x)∂ij)s, 0<s<1, of nondivergence form elliptic operators L=−aij(x)∂ij in bounded domains Ω⊂Rn, under minimal regularity assumptions on coefficients aij(x) and boundary ∂Ω. show that these appear several applications such as Monge–Ampère equations, elasticity, finance. The solution u to nonlocal Poisson problem{(−aij(x)∂ij)su=finΩu=0on∂Ω is characterized by a local degenerate/singular extension problem. develop method sliding paraboloids geometry prove interior Harnack inequality Hölder estimates for solutions problem when are bounded, measurable functions. This turn implies On définit les puissances fractionnaires des opérateurs elliptiques sous forme non-divergence dans domaines bornés hypothèses de régularité minimale sur et à la frontière Nous montrons que ces apparaissent plusieurs telles équations Monge–Ampère, élasticité La au problème non local{(−aij(x)∂ij)su=fdansΩu=0au∂Ω se caractérise par un d'extension dégénéré/singulier. développons méthode paraboloïdes glissants géométrie prouver l'inégalité intérieure estimations pour le lorsque sont fonctions mesurables bornées. Cela implique son tour fractionnaire.
منابع مشابه
Boundary Harnack principle and elliptic Harnack inequality
We prove a scale-invariant boundary Harnack principle for inner uniform domains over a large family of Dirichlet spaces. A novel feature of our work is that our assumptions are robust to time changes of the corresponding diffusions. In particular, we do not assume volume doubling property for the symmetric measure.
متن کاملStability of Elliptic Harnack inequality
We prove that the elliptic Harnack inequality (on a manifold, graph, or suitably regular metric measure space) is stable under bounded perturbations, as well as rough isometries.
متن کاملSome remarks on the elliptic Harnack inequality
In this note we give three short results concerning the elliptic Harnack inequality (EHI), in the context of random walks on graphs. The first is that the EHI implies polynomial growth of the number of points in balls, and the second that the EHI is equivalent to an annulus type Harnack inequality for Green’s functions. The third result uses the lamplighter group to give a counterexample concer...
متن کاملVariational Formulation and Numerical Analysis of Linear Elliptic Equations in Nondivergence form with Cordes Coefficients
This paper studies formulations of second-order elliptic partial differential equations in nondivergence form on convex domains as equivalent variational problems. The first formulation is that of Smears and Süli [SIAM J. Numer. Anal., 51 (2013), pp. 2088–2106], and the second one is a new symmetric formulation based on a least-squares functional. These formulations enable the use of standard f...
متن کاملThe Dirichlet Problem for Elliptic Equations in Divergence and Nondivergence Form with Singular Drift Term
is a Carleson measure in a Lipschitz domain Ω ⊂ R, n ≥ 1, (here δ (X) = dist (X, ∂Ω)). If the harmonic measure dωL0 ∈ A∞, then dωL1 ∈ A∞. This is an analog to Theorem 2.17 in [8] for divergence form operators. As an application of this, a new approximation argument and known results we obtain: Let L be an elliptic operator with coefficients A and drift term b; L can be in divergence or nondiver...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal de Mathématiques Pures et Appliquées
سال: 2021
ISSN: ['0021-7824', '1776-3371']
DOI: https://doi.org/10.1016/j.matpur.2021.10.003