Fractional boundary value problems with Riemann-Liouville fractional derivatives
نویسندگان
چکیده
منابع مشابه
Fractional Problems with Right-handed Riemann-liouville Fractional Derivatives
Abstract: In this paper, we investigate the existence of solutions for advanced fractional differential equations containing the right-handed Riemann-Liouville fractional derivative both with nonlinear boundary conditions and also with initial conditions given at the end point T of interval [0,T ]. We use both the method of successive approximations, the Banach fixed point theorem and the monot...
متن کاملFractional Diffusion based on Riemann-Liouville Fractional Derivatives
A fractional diffusion equation based on Riemann-Liouville fractional derivatives is solved exactly. The initial values are given as fractional integrals. The solution is obtained in terms of H-functions. It differs from the known solution of fractional diffusion equations based on fractional integrals. The solution of fractional diffusion based on a Riemann-Liouville fractional time derivative...
متن کاملPeriodic boundary value problems for Riemann–Liouville sequential fractional differential equations
In this paper, we shall discuss the properties of the well-known Mittag–Leffler function, and consider the existence of solution of the periodic boundary value problem for a fractional differential equation involving a Riemann–Liouville sequential fractional derivative by means of the method of upper and lower solutions and Schauder fixed point theorem.
متن کاملStudies on Sturm-Liouville boundary value problems for multi-term fractional differential equations
Abstract. The Sturm-Liouville boundary value problem of the multi-order fractional differential equation is studied. Results on the existence of solutions are established. The analysis relies on a weighted function space and a fixed point theorem. An example is given to illustrate the efficiency of the main theorems.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Advances in Difference Equations
سال: 2015
ISSN: 1687-1847
DOI: 10.1186/s13662-015-0413-y