Four-manifolds of pinched sectional curvature
نویسندگان
چکیده
In this paper, we study closed four-dimensional manifolds. particular, show that under various new pinching curvature conditions (for example, the sectional is no more than 5/6 of smallest Ricci eigenvalue) then manifold definite. If restricting to a metric with harmonic Weyl tensor, it must be self-dual or anti-self-dual same conditions. Similarly, if an Einstein metric, either complex projective space its Fubini-Study round sphere their quotients. Furthermore, also classify manifolds positive intersection form and upper bound on curvature.
منابع مشابه
Manifolds with Pointwise 1/4-pinched Curvature
In this lecture we will describe our recent joint work with SimonBrendle ([1], [2]) in which we give the differentiable classification ofcompact Riemannian manifolds with pointwise 1/4-pinched curvature.Our theorems are:Theorem 1. Let M be a compact Riemannian manifold with pointwise1/4-pinched curvature. Then M admits a metric of constant curvature,and therefore is ...
متن کاملConcentration of the Brownian bridge on Cartan-Hadamard manifolds with pinched negative sectional curvature
We study the rate of concentration of a Brownian bridge in time one around the corresponding geodesical segment on a Cartan-Hadamard manifold with pinched negative sectional curvature, when the distance between the two extremities tends to infinity. This improves on previous results by A. Eberle [7], and one of us [21]. Along the way, we derive a new asymptotic estimate for the logarithmic deri...
متن کاملStrictly Kähler-Berwald manifolds with constant holomorphic sectional curvature
In this paper, the authors prove that a strictly Kähler-Berwald manifold with nonzero constant holomorphic sectional curvature must be a Kähler manifold.
متن کاملSubmanifolds with Parallel Mean Curvature Vector in Pinched Riemannian Manifolds
In this paper, we prove a generalized integral inequality for submanifolds with parallel mean curvature vector in an arbitrary Riemannian manifold, and from which we obtain a pinching theorem for compact oriented submanifolds with parallel mean curvature vector in a complete simply connected pinched Riemannian manifold, which generalizes the results obtained by Alencar-do Carmo and Hong-Wei Xu.
متن کاملOn Einstein Manifolds of Positive Sectional Curvature
Let (M,g) be a compact oriented 4-dimensional Einstein manifold. If M has positive intersection form and g has non-negative sectional curvature, we show that, up to rescaling and isometry, (M,g) is CP2, with its standard Fubini-Study metric.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Pacific Journal of Mathematics
سال: 2022
ISSN: ['1945-5844', '0030-8730']
DOI: https://doi.org/10.2140/pjm.2022.319.17