Four-dimensional cohomogeneity one Ricci flow and nonnegative sectional curvature
نویسندگان
چکیده
منابع مشابه
Ricci Flow and Nonnegativity of Sectional Curvature
In this paper, we extend the general maximum principle in [NT3] to the time dependent Lichnerowicz heat equation on symmetric tensors coupled with the Ricci flow on complete Riemannian manifolds. As an application we exhibit complete Riemannian manifolds with bounded nonnegative sectional curvature of dimension greater than three such that the Ricci flow does not preserve the nonnegativity of t...
متن کاملConformally Flat Manifolds with Nonnegative Ricci Curvature
We show that complete conformally flat manifolds of dimension n > 3 with nonnegative Ricci curvature enjoy nice rigidity properties: they are either flat, or locally isometric to a product of a sphere and a line, or are globally conformally equivalent to R n or a spherical spaceform Sn/Γ. This extends previous results due to Q.-M. Cheng and B.-L. Chen and X.-P. Zhu. In this note, we study compl...
متن کاملBounding Sectional Curvature along a Kähler-ricci Flow
If a normalized Kähler-Ricci flow g(t), t ∈ [0,∞), on a compact Kähler manifold M , dimC M = n ≥ 3, with positive first Chern class satisfies g(t) ∈ 2πc1(M) and has curvature operator uniformly bounded in Ln-norm, the curvature operator will also be uniformly bounded along the flow. Consequently the flow will converge along a subsequence to a Kähler-Ricci soliton.
متن کاملRigidity of Compact Manifolds with Boundary and Nonnegative Ricci Curvature
Let Ω be an (n + 1)-dimensional compact Riemannian manifold with nonnegative Ricci curvature and nonempty boundary M = ∂Ω. Assume that the principal curvatures of M are bounded from below by a positive constant c. In this paper, we prove that the first nonzero eigenvalue λ1 of the Laplacian of M acting on functions on M satisfies λ1 ≥ nc2 with equality holding if and only if Ω is isometric to a...
متن کاملMean Curvature Driven Ricci Flow
We obtain the evolution equations for the Riemann tensor, the Ricci tensor and the scalar curvature induced by the mean curvature flow. The evolution for the scalar curvature is similar to the Ricci flow, however, negative, rather than positive, curvature is preserved. Our results are valid in any dimension.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Communications in Analysis and Geometry
سال: 2019
ISSN: 1019-8385,1944-9992
DOI: 10.4310/cag.2019.v27.n3.a1