Förster Resonance Energy Transfer across interpolymer complexes of poly(acrylic acid) and poly(acrylamide)
نویسندگان
چکیده
منابع مشابه
Förster resonance energy transfer photoacoustic microscopy.
Förster, or fluorescence, resonance energy transfer (FRET) provides fluorescence signals sensitive to intra- and inter-molecular distances in the 1 to 10 nm range. Widely applied in the fluorescence imaging environment, FRET enables visualization of physicochemical processes in molecular interactions and conformations. In this paper, we report photoacoustic imaging of FRET, based on nonradiativ...
متن کاملFörster resonance energy transfer and kinesin motor proteins.
Förster Resonance Energy Transfer (FRET) is the phenomenon of non-radiative transfer of electronic excitations from a donor fluorophore to an acceptor, mediated by electronic dipole-dipole coupling. The transfer rate and, as a consequence, efficiency depend non-linearly on the distance between the donor and the acceptor. FRET efficiency can thus be used as an effective and accurate reporter of ...
متن کاملDeep-tissue photoacoustic tomography of Förster resonance energy transfer.
Förster resonance energy transfer (FRET) is a distance-dependent process that transfers excited state energy from a donor molecule to an acceptor molecule without the emission of a photon. The FRET rate is determined by the proximity between the donor and the acceptor molecules; it becomes significant only when the proximity is within several nanometers. Therefore, FRET has been applied to visu...
متن کاملNanophotonic control of the Förster resonance energy transfer efficiency.
We have studied the influence of the local density of optical states (LDOS) on the rate and efficiency of Förster resonance energy transfer (FRET) from a donor to an acceptor. The donors and acceptors are dye molecules that are separated by a short strand of double-stranded DNA. The LDOS is controlled by carefully positioning the FRET pairs near a mirror. We find that the energy transfer effici...
متن کاملModification of Förster Resonance Energy Transfer Efficiency at Interfaces
We present a theoretical study on the impact of an interface on the FRET efficiency of a surface-bound acceptor-donor system. The FRET efficiency can be modified by two effects. Firstly, the donor's electromagnetic field at the acceptor's position is changed due to the partial reflection of the donor's field. Secondly, both the donor's and the acceptor's quantum yield of fluorescence can be cha...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Polymer
سال: 2017
ISSN: 0032-3861
DOI: 10.1016/j.polymer.2017.06.069