Formal theory of irregular linear difference equations
نویسندگان
چکیده
منابع مشابه
σ-Galois theory of linear difference equations
Inspired by the numerous applications of the differential algebraic independence results from [36], we develop a Galois theory with an action of an endomorphism σ for systems of linear difference equations of the form φ(y) = Ay , where A ∈ GLn(K ) and K is a φσ-field, that is, a field with two given commuting endomorphisms φ and σ, like in Example 2.1. This provides a technique to test whether ...
متن کاملThe Theory of Linear G-difference Equations
We introduce the notion of difference equation defined on a structured set. The symmetry group of the structure determines the set of difference operators. All main notions in the theory of difference equations are introduced as invariants of the action of the symmetry group. Linear equations are modules over the skew group algebra, solutions are morphisms relating a given equation to other equ...
متن کاملOn classical irregular q-difference equations
The primary aim of this paper is to (provide tools in order to) compute Galois groups of classical irregular q-difference equations. We are particularly interested in quantizations of omnipresent differential equations in the mathematical and physical literature, namely confluent generalized q-hypergeometric equations and q-Kloosterman equations.
متن کاملLinear Difference Equations
Dynamic economic models are a useful tool to study economic dynamics and get a better understanding of relevant phenomena such as growth and business cycle. Equilibrium conditions are normally identified by a system of difference equations and a set of boundary conditions (describing limit values of some variables). Thus, studying equilibrium properties requires studying the properties of a sys...
متن کاملALGEBRAIC CONSTRUCTION OF THE STOKES SHEAF FOR IRREGULAR LINEAR q-DIFFERENCE EQUATIONS by Jacques Sauloy
— The local analytic classification of irregular linear q-difference equations has recently been obtained by J.-P. Ramis, J. Sauloy and C. Zhang. Their description involves a q-analog of the Stokes sheaf and theorems of Malgrange-Sibuya type and is based on a discrete summation process due to C. Zhang. We show here another road to some of these results by algebraic means and we describe the q-G...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Acta Mathematica
سال: 1930
ISSN: 0001-5962
DOI: 10.1007/bf02547522