Foreground Feature Enhancement for Object Detection
نویسندگان
چکیده
منابع مشابه
Enhancement of SSD by concatenating feature maps for object detection
We propose an object detection method that improves the accuracy of the conventional SSD (Single Shot Multibox Detector), which is one of the top object detection algorithms in both aspects of accuracy and speed. The performance of a deep network is known to be improved as the number of feature maps increases. However, it is difficult to improve the performance by simply raising the number of f...
متن کاملObject Boundary Detection and Foreground/Background Segmentation
Object boundary detection and foreground/background segmentation are central problems in computer vision. The importance of combining low-, mid-, and high-level cues has been realized in recent literature. However, it is unclear how to efficiently and effectively engage and fuse different levels of information. In this paper, we emphasize a learning based approach to explore different levels of...
متن کاملFisher Discriminant Analysis (FDA), a supervised feature reduction method in seismic object detection
Automatic processes on seismic data using pattern recognition is one of the interesting fields in geophysical data interpretation. One part is the seismic object detection using different supervised classification methods that finally has an output as a probability cube. Object detection process starts with generating a pickset of two classes labeled as object and non-object and then selecting ...
متن کاملAn Object Recognition Strategy Base upon Foreground Detection
Unmanned aerial vehicles equipped with surveillance system have begun to play an increasingly important role in recent years, which has provided valuable information for us. Object recognition is necessary in processing video information. However, traditional recognition methods based on object segmentation can hardly meet the system demands for running online. In this paper, we have made use o...
متن کاملFeature Selective Networks for Object Detection
Objects for detection usually have distinct characteristics in different sub-regions and different aspect ratios. However, in prevalent two-stage object detection methods, Region-of-Interest (RoI) features are extracted by RoI pooling with little emphasis on these translation-variant feature components. We present feature selective networks to reform the feature representations of RoIs by explo...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: IEEE Access
سال: 2019
ISSN: 2169-3536
DOI: 10.1109/access.2019.2908630