Forecasting the Preparatory Phase of Induced Earthquakes by Recurrent Neural Network
نویسندگان
چکیده
Earthquakes prediction is considered the holy grail of seismology. After almost a century efforts without convincing results, recent raise machine learning (ML) methods in conjunction with deployment dense seismic networks has boosted new hope this field. Even if large earthquakes still occur unanticipated, laboratory, field, and theoretical studies support existence preparatory phase preceding earthquakes, where small stable ruptures progressively develop into an unstable confined zone around future hypocenter. The problem recognizing critical importance for mitigating risk both natural induced events. Here, we focus on seismicity at Geysers geothermal field California. We address M~4 identification by developing ML approach based features computed from catalogues, which are used to train recurrent neural network (RNN). show that RNN successfully reveal preparation earthquakes. These results confirm potential monitoring microseismicity should encourage research also predictability
منابع مشابه
Forecasting Using Elman Recurrent Neural Network
Forecasting is an important data analysis technique that aims to study historical data in order to explore and predict its future values. In fact, to forecast, different methods have been tested and applied from regression to neural network models. In this research, we proposed Elman Recurrent Neural Network (ERNN) to forecast the Mackey-Glass time series elements. Experimental results show tha...
متن کاملLayer Recurrent Neural Network Based Power System Load Forecasting
This paper presents a straight forward application of Layer Recurrent Neural Network (LRNN) to predict the load of a large distribution network. Short term load forecasting provides important information about the system’s load pattern, which is a premier requirement in planning periodical operations and facility expansion. Approximation of data patterns for forecasting is not an easy task to p...
متن کاملOne Day Ahead Load Forecasting Using Recurrent Neural Network
This paper presents short term load forecasting (STLF) in Java Island using recurrent neural network (RNN). The simple one of RNN is Elman, it has one hidden layer and suitable used in time series prediction. It can learn an input-output mapping which is nonlinear. The Elman RNN was proposed for one day a head forecasting, with interval time 30 minutes. Training model divided into weekday, week...
متن کاملMulti-Context-Recurrent Neural Network for Load Forecasting
A recurrent neural network is studied in this paper. A multi–context–recurrent neural network is defined and trained with back propagation, and is then applied to the short–term energy load forecasting task. The idea is to predict a daily maximum load for an arbitrary month ahead. A multi–context–recurrent neural network model was simulated and trained with different training sets to predict th...
متن کاملAuto-regressive Recurrent Neural Network Approach for Electricity Load Forecasting
this paper presents an auto-regressive network called the Auto-Regressive Multi-Context Recurrent Neural Network (ARMCRN), which forecasts the daily peak load for two large power plant systems. The auto-regressive network is a combination of both recurrent and non-recurrent networks. Weather component variables are the key elements in forecasting because any change in these variables affects th...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Forecasting
سال: 2021
ISSN: ['2571-9394']
DOI: https://doi.org/10.3390/forecast3010002