Forecasting Hierarchical Time Series in Power Generation
نویسندگان
چکیده
منابع مشابه
Optimal design of hierarchical wavelet networks for time-series forecasting
The purpose of this study is to identify the Hierarchical Wavelet Neural Networks (HWNN) and select important input features for each sub-wavelet neural network automatically. Based on the predefined instruction/operator sets, a HWNN is created and evolved using tree-structure based Extended Compact Genetic Programming (ECGP), and the parameters are optimized by Differential Evolution (DE) algo...
متن کاملwind farm impact on generation adequacy in power systems
در سال های اخیر به دلیل افزایش دمای متوسط کره زمین، بشر به دنبال روش های جایگزین برای تامین توان الکتریکی مورد نیاز خود بوده و همچنین در اکثر نقاط جهان سوزاندن سوخت های فسیلی در نیروگاه های حرارتی به عنوان مهم ترین روش تولید توان الکتریکی مطرح بوده است. به دلیل توجه به مسایل زیست محیطی، استفاده از منابع انرژی تجدید پذیر در سال های اخیر شدت یافته است. نیروگاه های بادی به عنوان یک منبع تولید توان...
15 صفحه اولDesign of a Fuzzy Time Series Forecasting Model for Hydro Power Generation
This paper mainly deals with the design of forecasting model for Hydro power generation using Fuzzy time series. The fuzzy time series has recently received an increasing attention because of its capability of dealing with vague and incomplete data. There have been a variety of models developed either to improve forecasting accuracy or reduce computation overhead. This technique has been applie...
متن کاملWind Power Forecasting Based on Time Series and Neural Network
The wind farm output power have the characteristics of dynamic, random, large capacity etc, which brought great difficulty for incorporating the wind farm in the bulk power system. In order to rationally regulate the power supply system in large grid connected wind power system and reduce the spinning reserve capacity of the power supply system and operating costs, it is necessary to forecastin...
متن کاملForecasting Financial Time Series with Grammar-Guided Feature Generation
The application of machine learning techniques to forecast financial time-series is not a recent development, yet it continues to attract considerable attention due to the difficulty of the problem which is compounded by the non-linear and non-stationary nature of the time-series. The choice of an appropriate set of features is crucial to improve forecasting accuracy of machine learning techniq...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Energies
سال: 2020
ISSN: 1996-1073
DOI: 10.3390/en13143722