Forecasting China’s Natural Gas Consumption Based on AdaBoost-Particle Swarm Optimization-Extreme Learning Machine Integrated Learning Method

نویسندگان
چکیده

منابع مشابه

Medical Dataset Classification: A Machine Learning Paradigm Integrating Particle Swarm Optimization with Extreme Learning Machine Classifier

Medical data classification is a prime data mining problem being discussed about for a decade that has attracted several researchers around the world. Most classifiers are designed so as to learn from the data itself using a training process, because complete expert knowledge to determine classifier parameters is impracticable. This paper proposes a hybrid methodology based on machine learning ...

متن کامل

Forecasting Based on High-Order Fuzzy-Fluctuation Trends and Particle Swarm Optimization Machine Learning

Most of existing fuzzy forecasting models partition historical training time series into fuzzy time series and build fuzzy-trend logical relationship groups to generate forecasting rules. The determination process of intervals is complex and uncertainty. In this paper, we present a novel fuzzy forecasting model based on high-order fuzzy-fluctuation trends and the fuzzy-fluctuation logical relat...

متن کامل

Fault Diagnosis of Power Transformers using Kernel based Extreme Learning Machine with Particle Swarm Optimization

To improve the fault diagnosis accuracy for power transformers, this paper presents a kernel based extreme learning machine (KELM) with particle swarm optimization (PSO). The parameters of KELM are optimized by using PSO, and then the optimized KELM is implemented for fault classification of power transformers. To verify its effectiveness, the proposed method was tested on nine benchmark classi...

متن کامل

Parameters Selection of Kernel Based Extreme Learning Machine Using Particle Swarm Optimization

The generalization performance of kernel based extreme learning machine (KELM) with Gaussian kernel are sensitive to the parameters combination (C, γ). The best generalization performance of KELM with Gaussian kernel is usually achieved in a very narrow range of such combinations. In order to achieve optimal generalization performance, the parameters of KELM with Gaussian kernel were optimized ...

متن کامل

Particle Swarm Optimization Based Learning Method for Process Neural Networks

This paper proposes a new learning method for process neural networks (PNNs) based on the Gaussian mixture functions and particle swarm optimization (PSO), called PSO-LM. First, the weight functions of the PNNs are specified as the generalized Gaussian mixture functions (GGMFs). Second, a PSO algorithm is used to optimize the parameters, such as the order of GGMFs, the number of hidden neurons,...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Energies

سال: 2018

ISSN: 1996-1073

DOI: 10.3390/en11112938