Fock space resolutions of the Virasoro highest weight modules withc ≤ 1

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Highest weight representations of the Virasoro algebra

We consider representations of the Virasoro algebra, a one-dimensional central extension of the Lie algebra of vectorfields on the unit circle. Positive-energy, highest weight and Verma representations are defined and investigated. The Shapovalov form is introduced, and we study Kac formula for its determinant and some consequences for unitarity and degeneracy of irreducible highest weight repr...

متن کامل

Constrained Fock spaces as Virasoro modules

The method of constrained Hamiltonian systems can be used to reduce Fock modules. It is applied to the Virasoro algebra, where a possibly new realization is found.

متن کامل

Resolutions and Hilbert Series of the Unitary Highest Weight Modules of the Exceptional Groups

We give a sufficient criterion on a highest weight module of a semisimple Lie algebra to admit a resolution in terms of sums of modules induced from a parabolic subalgebra. In particular, we show that all unitary highest weight modules admit such a resolution. As an application of our results we compute (minimal) resolutions and explicit formulas for the Hilbert series of the unitary highest we...

متن کامل

Highest-weight Theory: Verma Modules

We will now turn to the problem of classifying and constructing all finitedimensional representations of a complex semi-simple Lie algebra (or, equivalently, of a compact Lie group). It turns out that such representations can be characterized by their “highest-weight”. The first method we’ll consider is purely Lie-algebraic, it begins by constructing a universal representation with a given high...

متن کامل

Classification of simple weight Virasoro modules with a finite-dimensional weight space

We show that the support of a simple weight module over the Virasoro algebra, which has an infinite-dimensional weight space, coincides with the weight lattice and that all non-trivial weight spaces of such module are infinite dimensional. As a corollary we obtain that every simple weight module over the Virasoro algebra, having a nontrivial finite-dimensional weight space, is a Harish-Chandra ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Letters in Mathematical Physics

سال: 1991

ISSN: 0377-9017,1573-0530

DOI: 10.1007/bf01885497