Flux Correction for Nonconservative Convection-Diffusion Equation

نویسندگان

چکیده

Our goal is to develop a flux limiter of the Flux-Corrected Transport method for nonconservative convection-diffusion equation. For this, we consider hybrid difference scheme that linear combination monotone and high-order accuracy. The computed as an approximate solution corresponding optimization problem with objective function. constraints this are derived from inequalities valid apply scheme. numerical results limiters, which exact solutions problem, in good agreement.

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Finite Element Methods for Convection Diffusion Equation

This paper deals with the finite element solution of the convection diffusion equation in one and two dimensions. Two main techniques are adopted and compared. The first one includes Petrov-Galerkin based on Lagrangian tensor product elements in conjunction with streamlined upwinding. The second approach represents Bubnov/Petrov-Galerkin schemes based on a new group of exponential elements. It ...

متن کامل

A Nonlocal Convection-diffusion Equation

In this paper we study a nonlocal equation that takes into account convective and diffusive effects, ut = J ∗u−u+G ∗ (f(u))− f(u) in R, with J radially symmetric and G not necessarily symmetric. First, we prove existence, uniqueness and continuous dependence with respect to the initial condition of solutions. This problem is the nonlocal analogous to the usual local convection-diffusion equatio...

متن کامل

A modified diffusion coefficient technique for the convection diffusion equation

A new modified diffusi on coefficient (MDC) technique for solv ing conve ction diffusion equation is proposed. The Galerkin finite-element discretization process is applied on the modified equation rather than the original one. For a class of one-dimensional convec-tion–diffusion equations, we derive the modi fied diffusion coefficient analytically as a function of the equation coefficients and...

متن کامل

Finite integration method with RBFs for solving time-fractional convection-diffusion equation with variable coefficients

In this paper, a modification of finite integration method (FIM) is combined with the radial basis function (RBF) method to solve a time-fractional convection-diffusion equation with variable coefficients. The FIM transforms partial differential equations into integral equations and this creates some constants of integration. Unlike the usual FIM, the proposed method computes constants of integ...

متن کامل

Edge-based nonlinear diffusion for finite element approximations of convection–diffusion equations and its relation to algebraic flux-correction schemes

For the case of approximation of convection-diffusion equations using piecewise affine continuous finite elements a new edge-based nonlinear diffusion operator is proposed that makes the scheme satisfy a discrete maximum principle. The diffusion operator is shown to be Lipschitz continuous and linearity preserving. Using these properties we provide a full stability and error analysis, which, in...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Lecture notes in networks and systems

سال: 2023

ISSN: ['2367-3370', '2367-3389']

DOI: https://doi.org/10.1007/978-3-031-30251-0_2