Fluorinated ZnII Porphyrins for Dye-Sensitized Aqueous Photoelectrosynthetic Cells
نویسندگان
چکیده
منابع مشابه
Aqueous dye-sensitized solar cells.
Nowadays, dye-sensitized solar cells (DSSCs) are the most extensively investigated systems for the conversion of solar energy into electricity, particularly for implementation in devices where low cost and good performance are required. Nevertheless, a key aspect is still to be addressed, being considered strongly harmful for a long time, which is the presence of water in the cell, either in th...
متن کاملNatural chlorophyll-related porphyrins and chlorins for dye-sensitized solar cells.
Natural-chlorophyll-related porphyrins, including (2H, Zn, Cu)-protoporphyrin IX (Por-1) and Zn-mesoporphyrin IX (Por-2), and chlorins, including chlorin e₆ (Chl-1), chlorin e₄ (Chl-2), and rhodin G₇ (Chl-3), have been used in dye-sensitized solar cells (DSSCs). For porphyrin sensitizers that have vinyl groups at the β-positions, zinc coordinated Por-1 gives the highest solar-energy-to-electric...
متن کاملDesign and characterization of alkoxy-wrapped push-pull porphyrins for dye-sensitized solar cells.
Three alkoxy-wrapped push-pull porphyrins were designed and synthesized for dye-sensitized solar cell (DSSC) applications. Spectral, electrochemical, photovoltaic and electrochemical impedance spectroscopy properties of these porphyrin sensitizers were well investigated to provide evidence for the molecular design.
متن کاملOptimizing porphyrins for dye sensitized solar cells using large-scale ab initio calculations.
In the search for sustainable energy sources, dye sensitized solar cells (DSSCs) represent an attractive solution due to their low cost, relatively high efficiencies, and flexible design. Porphyrin-based dyes are characterized by strong absorption in the visible part of the spectrum and easy customization allowing their electronic properties to be controlled by structural variations. Here we pr...
متن کاملSpectroscopy of Donor−π−Acceptor Porphyrins for Dye-Sensitized Solar Cells
A recent improvement in the design of dyesensitized solar cells has been the combination of lightabsorbing, electron-donating, and electron-withdrawing groups within the same sensitizer molecule. This dye architecture has proven to increase the energy conversion efficiency of the cells, leading to record efficiency values. Here we investigate a zinc(II)-porphyrin-based dye with triphenylamine d...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: ACS Applied Materials & Interfaces
سال: 2019
ISSN: 1944-8244,1944-8252
DOI: 10.1021/acsami.9b08042