Fluorescence imaging ofDictyostelium discoideumwith a hard X-ray nanoprobe

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The Bionanoprobe: hard X-ray fluorescence nanoprobe with cryogenic capabilities

Hard X-ray fluorescence microscopy is one of the most sensitive techniques for performing trace elemental analysis of biological samples such as whole cells and tissues. Conventional sample preparation methods usually involve dehydration, which removes cellular water and may consequently cause structural collapse, or invasive processes such as embedding. Radiation-induced artifacts may also bec...

متن کامل

A hard X-ray nanoprobe beamline for nanoscale microscopy

The Hard X-ray Nanoprobe Beamline (or Nanoprobe Beamline) is an X-ray microscopy facility incorporating diffraction, fluorescence and full-field imaging capabilities designed and operated by the Center for Nanoscale Materials and the Advanced Photon Source at Sector 26 of the Advanced Photon Source at Argonne National Laboratory. This facility was constructed to probe the nanoscale structure of...

متن کامل

A hard x-ray nanoprobe for scanning and projection nanotomography.

To fabricate and qualify nanodevices, characterization tools must be developed to provide a large panel of information over spatial scales spanning from the millimeter down to the nanometer. Synchrotron x-ray-based tomography techniques are getting increasing interest since they can provide fully three-dimensional (3D) images of morphology, elemental distribution, and crystallinity of a sample....

متن کامل

Coherent Bragg nanodiffraction at the hard X-ray Nanoprobe beamline.

Bragg coherent diffraction with nanofocused hard X-ray beams provides unique opportunities for quantitative in situ studies of crystalline structure in nanoscale regions of complex materials and devices by a variety of diffraction-based techniques. In the case of coherent diffraction imaging, a major experimental challenge in using nanoscale coherent beams is maintaining a constant scattering v...

متن کامل

Hard X ray holographic diffraction imaging.

We determine the absolute electron density of a lithographically grown nanostructure with 25 nm resolution by combining hard x-ray Fourier transform holography with iterative phase retrieval methods. While holography immediately reveals an unambiguous image of the object, we deploy in addition iterative phase retrieval algorithms for pushing the resolution close to the diffraction limit. The us...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of Physics: Conference Series

سال: 2009

ISSN: 1742-6596

DOI: 10.1088/1742-6596/186/1/012086