Fluorapatite Enhances Mineralization of Mesenchymal/Endothelial Cocultures
نویسندگان
چکیده
منابع مشابه
In vitro differentiation and mineralization of dental pulp stem cells on enamel-like fluorapatite surfaces.
Our previous studies have shown good biocompatibility of fluorapatite (FA) crystal surfaces in providing a favorable environment for functional cell-matrix interactions of human dental pulp stem cells (DPSCs) and also in supporting their long-term growth. The aim of the current study was to further investigate whether this enamel-like surface can support the differentiation and mineralization o...
متن کاملThe effect of novel fluorapatite surfaces on osteoblast-like cell adhesion, growth, and mineralization.
There is increasing demand for biomedical implants to correct skeletal defects caused by trauma, disease, or genetic disorder. In this study, the MG-63 cells were grown on metals coated with ordered and disordered fluorapatite (FA) crystal surfaces to study the biocompatibility, initial cellular response, and the underlying mechanisms during this process. The long-term growth and mineralization...
متن کاملSecondary Mineralization of Ferrihydrite Affects Microbial Methanogenesis in Geobacter-Methanosarcina Cocultures.
UNLABELLED The transformation of ferrihydrite to stable iron oxides over time has important consequences for biogeochemical cycling of many metals and nutrients. The response of methanogenic activity to the presence of iron oxides depends on the type of iron mineral, but the effects of changes in iron mineralogy on methanogenesis have not been characterized. To address these issues, we construc...
متن کاملDegradation and mineralization of high-molecular-weight polycyclic aromatic hydrocarbons by defined fungal-bacterial cocultures.
This study investigated the biodegradation of high-molecular-weight polycyclic aromatic hydrocarbons (PAHs) in liquid media and soil by bacteria (Stenotrophomonas maltophilia VUN 10,010 and bacterial consortium VUN 10,009) and a fungus (Penicillium janthinellum VUO 10, 201) that were isolated from separate creosote- and manufactured-gas plant-contaminated soils. The bacteria could use pyrene as...
متن کاملRotary culture enhances pre-osteoblast aggregation and mineralization.
Three-dimensional environments have been shown to enhance cell aggregation and osteoblast differentiation. Thus, we hypothesized that three-dimensional (3D) growth environments would enhance the mineralization rate of human embryonic palatal mesenchymal (HEPM) pre-osteoblasts. The objective of this study was to investigate the potential use of rotary cell culture systems (RCCS) as a means to en...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Tissue Engineering Part A
سال: 2014
ISSN: 1937-3341,1937-335X
DOI: 10.1089/ten.tea.2013.0113