Flexible Process Model Mapping using Relaxation Labeling

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Mapping Multilingual Hierarchies Using Relaxation Labeling

This paper explores the automatic construction of a multilingual Lexical Knowledge Base from pre-existing lexical resources. We present a new and robust approach for linking already existing lexical/semantic hierarchies. We used a constraint satisfaction algorithm (relaxation labeling) to select -among all the candidate translations proposed by a bilingual dictionarythe right English WordNet sy...

متن کامل

Speaker identification using relaxation labeling

A nonlinear probabilistic model of the relaxation labeling (RL) process is implemented in the speaker identification task in order to disambiguate the labeling of the speech feature vectors. Identification rates using the RL are higher than those using the conventional VQ (vector quantization) method.

متن کامل

A flexible parallel architecture for relaxation labeling algorithms

The design of a flexible parallel architecture for both the discrete relaxation labeling (DRL) algorithm and the probabilistic relaxation labeling (PRL) algorithm is addressed. Through the analysis of parallelism in the computational models of both algorithms, the parallel execution of the algorithms on a flexible parallel architecture i s presented. Three basic types of parallel operations are...

متن کامل

Relaxation labeling using augmented lagrange-hopfield method

A novel relaxation labeling (RL) method is presented based on Augmented Lagrangian multipliers and the graded Hoppeld neural network (ALH). In this method, an RL problem is converted into a constrained optimization problem and solved by using the augmented Lagrangian and Hoppeld techniques. The ALH method yields results comparable to the best of the existing RL algorithms in terms of the optimi...

متن کامل

Relaxation labeling using Lagrange-Hopfield method

A novel relaxation labeling (RL) algorithm is proposed. RL is posed as a constrained optimization problem and the solution is found by using the Lagrangian multiplier method and a technique used in the graded Hoppeld neural network. In terms of the optimized objective value, the algorithm performs almost as well as simulated annealing, as shown by the experimental results. Also, the resulting a...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Fundamenta Informaticae

سال: 2020

ISSN: 0169-2968,1875-8681

DOI: 10.3233/fi-2020-1950