Fixed support positive-definite modification of covariance matrix estimators via linear shrinkage

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Comparison of linear shrinkage estimators of a large covariance matrix in normal and non-normal distributions

The problem of estimating the large covariance matrix of both normal and nonnormal distributions is addressed. In convex combinations of the sample covariance matrix and the identity matrix multiplied by a scalor statistic, we suggest a new estimator of the optimal weight based on exact or approximately unbiased estimators of the numerator and denominator of the optimal weight in non-normal cas...

متن کامل

Model Selection , Covariance Selection and Bayes Classification via Shrinkage Estimators

Statistics) MODEL SELECTION, COVARIANCE SELECTION AND BAYES CLASSIFICATION VIA SHRINKAGE ESTIMATORS by

متن کامل

Shrinkage Estimators for High-Dimensional Covariance Matrices

As high-dimensional data becomes ubiquitous, standard estimators of the population covariance matrix become difficult to use. Specifically, in the case where the number of samples is small (large p small n) the sample covariance matrix is not positive definite. In this paper we explore some recent estimators of sample covariance matrices in the large p, small n setting namely, shrinkage estimat...

متن کامل

Automatic positive semi-definite HAC covariance matrix and GMM estimation

This paper proposes a new class of HAC covariance matrix estimators. The standard HAC estimation method re-weights estimators of the autocovariances. Here we initially smooth the data observations themselves using kernel function based weights. The resultant HAC covariance matrix estimator is the normalised outer product of the smoothed random vectors and is therefore automatically positive sem...

متن کامل

Large dimensional analysis and optimization of robust shrinkage covariance matrix estimators

This article studies two regularized robust estimators of scatter matrices proposed in parallel in (Chen et al., 2011) and (Pascal et al., 2013), based on Tyler’s robust M-estimator (Tyler, 1987) and on Ledoit and Wolf’s shrinkage covariance matrix estimator (Ledoit and Wolf, 2004). These hybrid estimators have the advantage of conveying (i) robustness to outliers or impulsive samples and (ii) ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of Multivariate Analysis

سال: 2019

ISSN: 0047-259X

DOI: 10.1016/j.jmva.2018.12.002