Fixed point iteration for pseudocontractive maps
نویسندگان
چکیده
منابع مشابه
Fixed Point Iteration Method
We discuss the problem of finding approximate solutions of the equation 0 ) ( x f (1) In some cases it is possible to find the exact roots of the equation (1) for example when ) (x f is a quadratic on cubic polynomial otherwise, in general, is interested in finding approximate solutions using some numerical methods. Here, we will discuss a method called fixed point iteration method and a part...
متن کاملMinimum-Norm Fixed Point of Pseudocontractive Mappings
and Applied Analysis 3 where K and Q are nonempty closed convex subsets of the infinite-dimension real Hilbert spaces H1 and H2, respectively, and A is bounded linear mapping from H1 to H2. Equation 1.9 models many applied problems arising from image reconstructions and learning theory see, e.g., 4 . Someworks on the finite dimensional setting with relevant projectionmethods for solving image r...
متن کاملAPPROXIMATE FIXED POINT IN FUZZY NORMED SPACES FOR NONLINEAR MAPS
We de ne approximate xed point in fuzzy norm spaces and prove the existence theorems, we also consider approximate pair constructive map- ping and show its relation with approximate fuzzy xed point.
متن کاملApproximate Fixed Point Sequences and Convergence Theorems for Lipschitz Pseudocontractive Maps
Let K be a nonempty closed convex subset of a real Banach space E and T be a Lipschitz pseudocontractive self-map of K with F (T ) := {x ∈ K : Tx = x} 6= ∅. An iterative sequence {xn} is constructed for which ||xn − Txn|| → 0 as n → ∞. If, in addition, K is assumed to be bounded, this conclusion still holds without the requirement that F (T ) 6= ∅. Moreover, if, in addition, E has a uniformly G...
متن کاملIterative Approximation of Fixed Points of Lipschitz Pseudocontractive Maps
Let E be a q-uniformly smooth Banach space possessing a weakly sequentially continuous duality map (e.g., `p, 1 < p < ∞). Let T be a Lipschitzian pseudocontractive selfmapping of a nonempty closed convex and bounded subset K of E and let ω ∈ K be arbitrary. Then the iteration sequence {zn} defined by z0 ∈ K, zn+1 = (1 − μn+1)ω + μn+1yn; yn = (1 − αn)zn + αnTzn, converges strongly to a fixed poi...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Proceedings of the American Mathematical Society
سال: 1999
ISSN: 0002-9939,1088-6826
DOI: 10.1090/s0002-9939-99-05050-9