Fixed and random effects selection in nonparametric additive mixed models
نویسندگان
چکیده
منابع مشابه
Random effects selection in linear mixed models.
We address the important practical problem of how to select the random effects component in a linear mixed model. A hierarchical Bayesian model is used to identify any random effect with zero variance. The proposed approach reparameterizes the mixed model so that functions of the covariance parameters of the random effects distribution are incorporated as regression coefficients on standard nor...
متن کاملJoint variable selection for fixed and random effects in linear mixed-effects models.
It is of great practical interest to simultaneously identify the important predictors that correspond to both the fixed and random effects components in a linear mixed-effects (LME) model. Typical approaches perform selection separately on each of the fixed and random effect components. However, changing the structure of one set of effects can lead to different choices of variables for the othe...
متن کاملVariable Selection in Nonparametric Additive Models.
We consider a nonparametric additive model of a conditional mean function in which the number of variables and additive components may be larger than the sample size but the number of nonzero additive components is "small" relative to the sample size. The statistical problem is to determine which additive components are nonzero. The additive components are approximated by truncated series expan...
متن کاملFixed and random effects selection in linear and logistic models.
We address the problem of selecting which variables should be included in the fixed and random components of logistic mixed effects models for correlated data. A fully Bayesian variable selection is implemented using a stochastic search Gibbs sampler to estimate the exact model-averaged posterior distribution. This approach automatically identifies subsets of predictors having nonzero fixed eff...
متن کاملBayesian nonparametric mixed random utility models
Wepropose amixedmultinomial logit model, with themixing distribution assigned a general (nonparametric) stick-breaking prior.Wepresent aMarkov chainMonte Carlo (MCMC) algorithm to sample and estimate the posterior distribution of the model’s parameters. The algorithm relies on a Gibbs (slice) sampler that is useful for Bayesian nonparametric (infinite-dimensional) models. The model and algorith...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Electronic Journal of Statistics
سال: 2012
ISSN: 1935-7524
DOI: 10.1214/12-ejs695