Fitting correlated data

نویسندگان

چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Fitting correlated hadron mass spectrum data.

We discuss fitting hadronic Green functions versus time t to extract mass values in quenched lattice QCD. These data are themselves strongly correlated in t. With only a limited number of data samples, the method of minimising correlated χ 2 is unreliable. We explore several methods of modelling the correlations among the data set by a few parameters which then give a stable and sensible fit ev...

متن کامل

Fitting circles to data with correlated noise

We study the problem of fitting circles to scattered data. Unlike many other studies, we assume that the noise is (strongly) correlated; we adopt a particular model where correlations decay exponentially with the distance between data points. Our main results are formulas for the maximum likelihood estimates and their covariance matrix. Our study is motivated by (and applied to) arcs collected ...

متن کامل

Exponential data fitting

In this initial chapter we consider some of the basic methods used in the fitting of data by real and complex linear combinations of exponentials. We have selected the classes of methods that are most frequently used in many different fields: variable projections for solving this separable nonlinear least squares problem, derivatives and variants of Prony’s method, which rely on evenly sampled ...

متن کامل

Geometric Data Fitting

Given a dense set of points lying on or near an embedded submanifold M0 ⊂ Rn of Euclidean space, the manifold fitting problem is to find an embedding F :M → Rn that approximatesM0 in the sense of least squares. When the dataset is modeled by a probability distribution, the fitting problem reduces to that of finding an embedding that minimizes Ed[F], the expected square of the distance from a po...

متن کامل

Multiple Neutral Data Fitting

A method is proposed for estimating the relationship between a number of variables; this differs from regression where the emphasis is on predicting one of the variables. Regression assumes that only one of the variables has error or natural variability, whereas our technique does not make this assumption; instead, it treats all variables in the same way and produces models which are units inva...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Physical Review D

سال: 1994

ISSN: 0556-2821

DOI: 10.1103/physrevd.49.2616