First QSPR models to predict the thermal stability of potential self-reactive substances

نویسندگان

چکیده

Self-reactive substances are unstable chemical which can easily decompose and may lead to explosion in transport, storage, or process situations. For this reason, their thermal stability properties required assess possible safety issues for classification purpose. In study, the first quantitative structure–property relationships (QSPR) dedicated class of compounds were developed predict heat decomposition self-reactive from molecular structures. The database used develop validate models was issued a experimental campaign on 50 samples using differential scanning calorimetry homogeneous conditions. QSPR derived GA-MLR methods (using genetic algorithm multi-linear regressions) descriptors calculated by Dragon software based two types inputs: 3D structures determined density functional theory (DFT), allowing access three-dimensional descriptors, SMILES codes, favoring simpler models, requiring no preliminary quantum calculations. All respected OECD validation guidelines regulatory acceptability models. They tested internal external tests applicability domains defined analyzed.

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

QSPR models to predict thermodynamic properties of some mono and polycyclic aromatic hydrocarbons (PAHs) using GA-MLR

Quantitative Structure-Property Relationship (QSPR) models for modeling and predicting thermodynamic properties such as the enthalpy of vaporization at standard condition (ΔH˚vap kJ mol-1) and normal temperature of boiling points (T˚bp K) of 57 mono and Polycyclic Aromatic Hydrocarbons (PAHs) have been investigated. The PAHs were randomly separated into 2 groups: training and test sets. A set o...

متن کامل

on the relationship between self- regulated learning strategies use and willingness to communicate in the context of writing

این تحقیق به منظور بررسی رابطه بین میزان استراتژیهای خود-تنظیم شده یادگیری و تمایل به ایجاد ارتباط دانشجویان زبان انگلیسی انجام شده است.علاوه بر این،روابط و کنش های موجود بین ریزسنجه های استراتژیهای خود-تنظیم شده یادگُیری ، مهارت نگارش و تمایل به برقراری ارتباط و همچنین تاٍثیرجنسیت دانشجویان زبان انگلیسی در استراتژیهای خود-تنظیم شده یادگیری و تمایل به برقراری ارتباط آنها مورد بررسی قرار گرفته شد.

15 صفحه اول

Hybrid Models Performance Assessment to Predict Flow of Gamasyab River

Awareness of the level of river flow and its fluctuations at different times is one of the significant factor to achieve sustainable development for water resource issues. Therefore, the present study two hybrid models, Wavelet- Adaptive Neural Fuzzy Interference System (WANFIS) and Wavelet- Artificial Neural Network (WANN) are used for flow prediction of Gamasyab River (Nahavand, Hamedan, Iran...

متن کامل

Hybrid Models Performance Assessment to Predict Flow of Gamasyab River

Awareness of the level of river flow and its fluctuations at different times is one of the significant factor to achieve sustainable development for water resource issues. Therefore, the present study two hybrid models, Wavelet- Adaptive Neural Fuzzy Interference System (WANFIS) and Wavelet- Artificial Neural Network (WANN) are used for flow prediction of Gamasyab River (Nahavand, Hamedan, Iran...

متن کامل

A simple QSPR model to predict aqueous solubility of drugs

Aqueous solubility of a drug/drug candidate is essential data in drug discovery, and an in silico method for predicting the aqueous solubility of drug candidates provides a valuable tool to speed up the process of drug discovery and development. This paper describes a simple quantitative structure property relationship (QSPR) model for predicting the aqueous solubility of drugs which is validat...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Chemical Engineering Research & Design

سال: 2022

ISSN: ['1744-3563', '0263-8762']

DOI: https://doi.org/10.1016/j.psep.2022.05.017