Finitep-groups with Central Automorphism Group of Minimal Order

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

AUTOMORPHISM GROUP OF GROUPS OF ORDER pqr

H"{o}lder in 1893 characterized all groups of order $pqr$ where  $p>q>r$ are prime numbers. In this paper,  by using new presentations of these groups, we compute their full automorphism group.

متن کامل

Minimal Odd Order Automorphism Groups

We show that 3 is the smallest order of a non-trivial odd order group which occurs as the full automorphism group of a finite group.

متن کامل

the automorphism group for $p$-central $p$-groups

a $p$-group $g$ is $p$-central if $g^{p}le z(g)$‎, ‎and $g$ is‎ ‎$p^{2}$-abelian if $(xy)^{p^{2}}=x^{p^{2}}y^{p^{2}}$ for all $x,yin‎ ‎g$‎. ‎we prove that for $g$ a finite $p^{2}$-abelian $p$-central‎ ‎$p$-group‎, ‎excluding certain cases‎, ‎the order of $g$ divides the‎ ‎order of $text{aut}(g)$‎.

متن کامل

the automorphism group for p-central p-groups

a $p$-group $g$ is $p$-central if $g^{p}le z(g)$‎, ‎and $g$ is‎ ‎$p^{2}$-abelian if $(xy)^{p^{2}}=x^{p^{2}}y^{p^{2}}$ for all $x,yin‎ ‎g$‎. ‎we prove that for $g$ a finite $p^{2}$-abelian $p$-central ‎$p$-group‎, ‎excluding certain cases‎, ‎the order of $g$ divides the ‎order of $text{aut}(g)$‎.

متن کامل

Kazhdan Groups with Infinite Outer Automorphism Group

For each countable group Q we produce a short exact sequence 1 → N → G → Q → 1 where G is f.g. and has a graphical 1 6 presentation and N is f.g. and satisfies property T . As a consequence we produce a group N with property T such that Out(N) is infinite. Using the tools developed we are also able to produce examples of nonHopfian and non-coHopfian groups with property T . One of our main tool...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Communications in Algebra

سال: 2015

ISSN: 0092-7872,1532-4125

DOI: 10.1080/00927872.2013.876237