Finiteness of lattice points on varieties F(y) = F(g(

نویسندگان

چکیده

We construct affine varieties over \mathbb{Q} and imaginary quadratic number fields \mathbb{K} with a finite of \alpha-lattice points for fixed \alpha\in \mathcal{O}_\mathbb{K}, where \mathcal{O}_\mathbb{K} denotes the ring algebraic integers \mathbb{K}. These arise from equations form F(y) = F(g(x_1,x_2,\ldots, x_k))+r(x_1,x_2\ldots, x_k), F is rational function, g r are polynomials \mathbb{K}, degree relatively small. also give an example variety dimension two, integral points. This defined cyclotomic field \mathbb{Q}(\xi_3)=\mathbb{Q}(\sqrt{-3}).

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Unipotent Flows and Counting Lattice Points on Homogeneous Varieties

Your use of the JSTOR archive indicates your acceptance of JSTOR's Terms and Conditions of Use, available at http://www.jstor.org/about/terms.html. JSTOR's Terms and Conditions of Use provides, in part, that unless you have obtained prior permission, you may not download an entire issue of a journal or multiple copies of articles, and you may use content in the JSTOR archive only for your perso...

متن کامل

Genera of Algebraic Varieties and Counting of Lattice Points

This paper announces results on the behavior of some important algebraic and topological invariants — Euler characteristic, arithmetic genus, and their intersection homology analogues; the signature, etc. — and their associated characteristic classes, under morphisms of projective algebraic varieties. The formulas obtained relate global invariants to singularities of general complex algebraic (...

متن کامل

Finiteness Properties of Locally Finite Abelian Varieties

We show that any locally finite abelian variety is generated by a finite algebra. We solve a problem posed by D. Hobby and R. McKenzie by exhibiting a nonfinitely based finite abelian algebra.

متن کامل

Nearest Points on Toric Varieties

We determine the Euclidean distance degree of a projective toric variety. This extends the formula of Matsui and Takeuchi for the degree of the A-discriminant in terms of Euler obstructions. Our primary goal is the development of reliable algorithmic tools for computing the points on a real toric variety that are closest to a given data point.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Notes on Number Theory and Discrete Mathematics

سال: 2021

ISSN: ['1310-5132', '2367-8275']

DOI: https://doi.org/10.7546/nntdm.2021.27.1.76-90