Finite type invariants for knotoids

نویسندگان

چکیده

We extend the theory of Vassiliev (or finite type) invariants for knots to knotoids using two different approaches. Firstly, we take closures on obtain and use knots, proving that these are knotoid isotopy invariant. Secondly, define type directly knotoids, by extending singular via skein relation. Then, spherical show there non-trivial type-1 invariants, in contrast with classical knot where vanish. give a complete classifying linear chord diagrams order one, present examples arising from affine index polynomial extended bracket polynomial.

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Finite Type Invariants for Knots

We use the Jaco-Shalen and Johannson theory of the characteristic submanifold and the Torus theorem (Gabai, Casson-Jungreis) to develop an intrinsic finite tvne theory for knots in irreducible 3-manifolds. We also establish _ __ a relation between finite type knot invariants in 3-manifolds and these in R3. existence of non-trivial finite type invariants for knots in irreducible 3-manifolds. rig...

متن کامل

Finite Type Invariants

This is an overview article on finite type invariants, written for the Encyclopedia of Mathematical

متن کامل

Finite Type Invariants

This is an overview article on finite type invariants, written for the Encyclopedia of Mathematical Physics.

متن کامل

Finite Type Invariants and Milnor Invariants for Brunnian Links

A link L in the 3-sphere is called Brunnian if every proper sublink of L is trivial. In a previous paper, the first author proved that the restriction to Brunnian links of any Goussarov-Vassiliev finite type invariant of (n + 1)component links of degree < 2n is trivial. The purpose of this paper is to study the first nontrivial case. We show that the restriction of an invariant of degree 2n to ...

متن کامل

Finite-type Invariants for Curves on Surfaces

This study defines finite-type invariants for curves on surfaces and reveals the construction of these finite-type invariants for stable homeomorphism classes of curves on compact oriented surfaces without boundaries. These invariants are a higher-order generalisation of a part of Arnold’s invariants that are first-order invariants for plane immersed curves. The invariants in this theory are de...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: European Journal of Combinatorics

سال: 2021

ISSN: ['1095-9971', '0195-6698']

DOI: https://doi.org/10.1016/j.ejc.2021.103402