Finite-time blowup and existence of global positive solutions of a semi-linear SPDE
نویسندگان
چکیده
منابع مشابه
Optimal Finite-time Control of Positive Linear Discrete-time Systems
This paper considers solving optimization problem for linear discrete time systems such that closed-loop discrete-time system is positive (i.e., all of its state variables have non-negative values) and also finite-time stable. For this purpose, by considering a quadratic cost function, an optimal controller is designed such that in addition to minimizing the cost function, the positivity proper...
متن کاملNon-existence of positive stationary solutions for a class of semi-linear PDEs with random coefficients
We consider a so-called random obstacle model for the motion of a hypersurface through a field of random obstacles, driven by a constant driving field. The resulting semilinear parabolic PDE with random coefficients does not admit a global nonnegative stationary solution, which implies that an interface that was flat originally cannot get stationary. The absence of global stationary solutions i...
متن کاملGlobal Existence and Blowup of Solutions for a Parabolic Equation with a Gradient Term
The author discusses the semilinear parabolic equation ut = ∆u+ f(u) + g(u)|∇u|2 with u|∂Ω = 0, u(x, 0) = φ(x). Under suitable assumptions on f and g, he proves that, if 0 ≤ φ ≤ λψ with λ < 1, then the solutions are global, while if φ ≥ λψ with λ > 1, then the solutions blow up in a finite time, where ψ is a positive solution of ∆ψ + f(ψ) + g(ψ)|∇ψ|2 = 0, with ψ|∂Ω = 0. We study the solutions o...
متن کاملExistence and multiplicity of positive solutions for a coupled system of perturbed nonlinear fractional differential equations
In this paper, we consider a coupled system of nonlinear fractional differential equations (FDEs), such that both equations have a particular perturbed terms. Using emph{Leray-Schauder} fixed point theorem, we investigate the existence and multiplicity of positive solutions for this system.
متن کاملexistence and approximate $l^{p}$ and continuous solution of nonlinear integral equations of the hammerstein and volterra types
بسیاری از پدیده ها در جهان ما اساساً غیرخطی هستند، و توسط معادلات غیرخطی بیان شده اند. از آنجا که ظهور کامپیوترهای رقمی با عملکرد بالا، حل مسایل خطی را آسان تر می کند. با این حال، به طور کلی به دست آوردن جوابهای دقیق از مسایل غیرخطی دشوار است. روش عددی، به طور کلی محاسبه پیچیده مسایل غیرخطی را اداره می کند. با این حال، دادن نقاط به یک منحنی و به دست آوردن منحنی کامل که اغلب پرهزینه و ...
15 صفحه اولذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Stochastic Processes and their Applications
سال: 2010
ISSN: 0304-4149
DOI: 10.1016/j.spa.2009.12.003