Finite-size scaling above the upper critical dimension
نویسندگان
چکیده
منابع مشابه
Finite-size scaling above the upper critical dimension.
We present a unified view of finite-size scaling (FSS) in dimension d above the upper critical dimension, for both free and periodic boundary conditions. We find that the modified FSS proposed some time ago to allow for violation of hyperscaling due to a dangerous irrelevant variable applies only to k=0 fluctuations, and "standard" FSS applies to k≠0 fluctuations. Hence the exponent η describin...
متن کاملFinite-size scaling and universality above the upper critical dimensionality.
According to renormalization theory, Ising systems above their upper critical dimensionality du 4 have classical critical behavior and the ratio of magnetization moments Q km2l2ykm4l has the universal value 0.456947 . . .. However, Monte Carlo simulations of d 5 Ising models have been reported which yield strikingly different results, suggesting that the renormalization scenario is incorr...
متن کاملFinite-size scaling of directed percolation above the upper critical dimension.
We consider analytically as well as numerically the finite-size scaling behavior in the stationary state near the nonequilibrium phase transition of directed percolation within the mean field regime, i.e., above the upper critical dimension. Analogous to equilibrium, usual finite-size scaling is valid below the upper critical dimension, whereas it fails above. Performing a momentum analysis of ...
متن کاملScaling above the upper critical dimension in Ising models.
We rederive the finite size scaling formula for the apparent critical temperature by using Mean Field Theory for the Ising Model above the upper critical dimension. We have also performed numerical simulations in five dimensions and our numerical data are in a good agreement with the Mean Field theoretical predictions, in particular, with the finite size exponent of the connected susceptibility...
متن کاملFinite-size scaling above the upper critical dimension revisited: The case of the five-dimensional Ising model
Monte Carlo results for the moments 〈M〉 of the magnetization distribution of the nearestneighbor Ising ferromagnet in a L geometry, where L (4 ≤ L ≤ 22) is the linear dimension of a hypercubic lattice with periodic boundary conditions in d = 5 dimensions, are analyzed in the critical region and compared to a recent theory of Chen and Dohm (CD) [X.S. Chen and V. Dohm, Int. J. Mod. Phys. C (1998)...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Physical Review E
سال: 2014
ISSN: 1539-3755,1550-2376
DOI: 10.1103/physreve.90.062137