Finite mixture regression: A sparse variable selection by model selection for clustering
نویسندگان
چکیده
منابع مشابه
Finite mixture regression: a sparse variable selection by model selection for clustering
HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers. L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau...
متن کاملVariable Selection in Finite Mixture of Regression Models
In the applications of finite mixture of regression (FMR) models, often many covariates are used, and their contributions to the response variable vary from one component to another of the mixture model. This creates a complex variable selection problem. Existing methods, such as the Akaike information criterion and the Bayes information criterion, are computationally expensive as the number of...
متن کاملBayesian variable selection for finite mixture model of linear regressions
We propose a Bayesian method for variable selection in the finite mixture model of linear regressions. The model assumes that the observations come from a heterogeneous population which is a mixture of a finite number of sub-populations. Within each sub-population, the response variable can be explained by a linear regression on the predictor variables. So the whole data set can be modeled by a...
متن کاملA Sparse Regression Mixture Model for Clustering Time-Series
In this study we present a new sparse polynomial regression mixture model for fitting time series. The contribution of this work is the introduction of a smoothing prior over component regression coefficients through a Bayesian framework. This is done by using an appropriate Student-t distribution. The advantages of the sparsity-favouring prior is to make model more robust, less independent on ...
متن کاملRobust variable selection for mixture linear regression models
In this paper, we propose a robust variable selection to estimate and select relevant covariates for the finite mixture of linear regression models by assuming that the error terms follow a Laplace distribution to the data after trimming the high leverage points. We introduce a revised Expectation-maximization (EM) algorithm for numerical computation. Simulation studies indicate that the propos...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Electronic Journal of Statistics
سال: 2015
ISSN: 1935-7524
DOI: 10.1214/15-ejs1082