FINITE GROUPS WITH A MINIMAL FRATTINI SUBGROUP PROPERTY
نویسندگان
چکیده
منابع مشابه
Groups in which every subgroup has finite index in its Frattini closure
In 1970, Menegazzo [Gruppi nei quali ogni sottogruppo e intersezione di sottogruppi massimali, Atti Accad. Naz. Lincei Rend. Cl. Sci. Fis. Mat. Natur. 48 (1970), 559--562.] gave a complete description of the structure of soluble $IM$-groups, i.e., groups in which every subgroup can be obtained as intersection of maximal subgroups. A group $G$ is said to have the $FM$...
متن کاملA Generalized Frattini Subgroup of a Finite Group
For a finite group G and an arbitrary prime p, let S (G) denote the P intersection of all maximal subgroups M of G such that [G:M] is both composite and not divisible by p; if no such M exists we set S (G) G. Some properties of P G are considered involving S (G). In particular, we obtain a characterization of P G when each M in the definition of S (G) is nilpotent. P
متن کاملOn central Frattini extensions of finite groups
An extension of a group A by a group G is thought of here simply as a group H containing A as a normal subgroup with quotient H/A isomorphic to G. It is called a central Frattini extension if A is contained in the intersection of the centre and the Frattini subgroup of H . The result of the paper is that, given a finite abelian A and finite G, there exists a central Frattini extension of A by G...
متن کاملRelative non-Normal Graphs of a Subgroup of Finite Groups
Let G be a finite group and H,K be two subgroups of G. We introduce the relative non-normal graph of K with respect to H , denoted by NH,K, which is a bipartite graph with vertex sets HHK and KNK(H) and two vertices x ∈ H HK and y ∈ K NK(H) are adjacent if xy / ∈ H, where HK =Tk∈K Hk and NK(H) = {k ∈ K : Hk = H}. We determined some numerical invariants and state that when this graph is planar or...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Glasgow Mathematical Journal
سال: 2003
ISSN: 0017-0895,1469-509X
DOI: 10.1017/s0017089502008960