Finite groups all of whose non-2-closed 2-local subgroups have sylow 2-subgroups of class 2

نویسندگان

چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On rational groups with Sylow 2-subgroups of nilpotency class at most 2

A finite group $G$ is called rational if all its irreducible complex characters are rational valued. In this paper we discuss about rational groups with Sylow 2-subgroups of nilpotency class at most 2 by imposing the solvability and nonsolvability assumption on $G$ and also via nilpotency and nonnilpotency assumption of $G$.

متن کامل

Principal 2-Blocks and Sylow 2-Subgroups

Let G be a finite group with Sylow 2-subgroup P 6 G. Navarro–Tiep–Vallejo have conjectured that the principal 2-block of NG(P) contains exactly one irreducible Brauer character if and only if all odd-degree ordinary irreducible characters in the principal 2-block of G are fixed by a certain Galois automorphism σ. By recent work of Navarro–Vallejo it suffices to show this conjecture holds for al...

متن کامل

Classification of finite simple groups whose Sylow 3-subgroups are of order 9

In this paper, without using the classification of finite simple groups, we determine the structure of  finite simple groups whose Sylow 3-subgroups are of the order 9. More precisely, we classify finite simple groups whose Sylow 3-subgroups are elementary abelian of order 9.

متن کامل

Ranks of the Sylow 2-Subgroups of the Classical Groups

Let S be a 2-group. The rank (normal rank) of S is the maximal dimension of an elementary abelian subgroup (a normal elementary abelian subgroup) of S over Z2. The purpose of this article is to determine the rank and normal rank of S, where S is a Sylow 2-subgroup of the classical groups of odd characteristic.

متن کامل

A New Finite Simple Group with Abelian 2-sylow Subgroups.

A 2-Sylow subgroup of J is elementary abelian of order 8 and J has no subgroup of index 2. If r is an involution in J, then C(r) = (r) X K, where K _ A5. Let G be a finite group with the following properties: (a) S2-subgroups of G are abelian; (b) G has no subgroup of index 2; and (c) G contains an involution t such that 0(t) = (t) X F, where F A5. Then G is a (new) simple group isomorphic to J...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of Algebra

سال: 1975

ISSN: 0021-8693

DOI: 10.1016/0021-8693(75)90046-0