Finite element methods for semilinear parabolic interface problems

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Partially Penalized Immersed Finite Element Methods for Parabolic Interface Problems

We present partially penalized immersed finite element methods for solving parabolic interface problems on Cartesian meshes. Typical semi-discrete and fully discrete schemes are discussed. Error estimates in an energy norm are derived. Numerical examples are provided to support theoretical analysis.

متن کامل

Adaptive Finite Element Methods for Parabolic Problems

We continue our work on adaptive nite element methods with a study of time discretization of analytic semigroups. We prove optimal a priori and a posteriori error estimates for the discontinuous Galerkin method showing, in particular, that analytic semigroups allow long-time integration without error accumulation. 1. Introduction This paper is a continuation of the series of papers 1], 2], 3], ...

متن کامل

Hp -version Discontinuous Galerkin Finite Element Methods for Semilinear Parabolic Problems

We consider the hp–version interior penalty discontinuous Galerkin finite element method (hp–DGFEM) for semilinear parabolic equations with mixed Dirichlet and Neumann boundary conditions. Our main concern is the error analysis of the hp–DGFEM on shape–regular spatial meshes. We derive error bounds under various hypotheses on the regularity of the solution, for both the symmetric and non–symmet...

متن کامل

Adaptive Space-Time Finite Element Methods for Parabolic Optimization Problems

In this paper we summerize recent results on a posteriori error estimation and adaptivity for space-time finite element discretizations of parabolic optimization problems. The provided error estimates assess the discretization error with respect to a given quantity of interest and separate the influences of different parts of the discretization (time, space, and control discretization). This al...

متن کامل

Gradient Recovery in Adaptive Finite Element Methods for Parabolic Problems

Abstract. We derive energy-norm a posteriori error bounds, using gradient recovery (ZZ) estimators to control the spatial error, for fully discrete schemes for the linear heat equation. This appears to be the first completely rigorous derivation of ZZ estimators for fully discrete schemes for evolution problems, without any restrictive assumption on the timestep size. An essential tool for the ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: PAMM

سال: 2007

ISSN: 1617-7061,1617-7061

DOI: 10.1002/pamm.200700162