Finite element approximation of the $p$-Laplacian

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

FINITE ELEMENT APPROXIMATION OF THE p-LAPLACIAN

In this paper we consider the continuous piecewise linear finite element approximation of the following problem: Given p € (1, oo), /, and g , find u such that -V • (\Vu\"-2Vu) = f iniîcR2, u = g on a«. The finite element approximation is defined over Í2* , a union of regular triangles, yielding a polygonal approximation to Q. For sufficiently regular solutions u , achievable for a subclass of ...

متن کامل

Finite Element Approximation of the p(·)-Laplacian

In this paper we consider the continuous piecewise linear finite element approximation of the following problem: Given p € (1, oo), /, and g , find u such that -V • (\Vu\"-2Vu) = f iniîcR2, u = g on a«. The finite element approximation is defined over Í2* , a union of regular triangles, yielding a polygonal approximation to Q. For sufficiently regular solutions u , achievable for a subclass of ...

متن کامل

Finite Element Laplacian Feature Detector

Recently, interest point detectors and descriptors have become prominent in the field of computer vision and are typically used to determine correspondences between two images of the same scene. We present a design procedure for the Finite Element Laplacian Feature (FELF) Detector which is similar to the multi-scale approach used in the SURF detector and detects blob like features. We illustrat...

متن کامل

QUASI-NORM TECHNIQUES FOR FINITE ELEMENT APPROXIMATION OF p-LAPLAICAN

The p-Laplacian problem is one of the typical examples of degenerate nonlinear systems arising from nonlinear diffusion and filtration, powerlaw materials and quasi-Newtonian flows. In this article we give a survey of quasi-norm techniques to establish optimal error estimates for finite element approximation of p-Laplacian.

متن کامل

Mixed Finite Element Approximation of the Vector Laplacian with Dirichlet Boundary Conditions

We consider the finite element solution of the vector Laplace equation on a domain in two dimensions. For various choices of boundary conditions, it is known that a mixed finite element method, in which the rotation of the solution is introduced as a second unknown, is advantageous, and appropriate choices of mixed finite element spaces lead to a stable, optimally convergent discretization. How...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Mathematics of Computation

سال: 1993

ISSN: 0025-5718

DOI: 10.1090/s0025-5718-1993-1192966-4