Finite-dimensional Chu space

نویسندگان

چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The Finite Dimensional Normed Linear Space Theorem

The claim that follows, which I have called the nite-dimensional normed linear space theorem, essentially says that all such spaces are topologically R with the Euclidean norm. This means that in many cases the intuition we obtain in R,R, and R by imagining intervals, circles, and spheres, respectively, will carry over into not only higher dimension R but also any vector space that has nite dim...

متن کامل

Quantum mechanics in finite dimensional Hilbert space

The quantum mechanical formalism for position and momentum of a particle in a one dimensional cyclic lattice is constructively developed. Some mathematical features characteristic of the finite dimensional Hilbert space are compared with the infinite dimensional case. The construction of an unbiased basis for state determination is discussed.

متن کامل

Formal Topology, Chu Space and Approximable Concept

Within Martin-Lőf type theory ([4]), G. Sambin initiated the intuitionistic formal topology which includes Scott algebraic domain theory as a special case (unary formal topology)([7]). In [6], he introduced the notions of (algebraic) information base and translation, and proved the equivalence between the category of (algebraic) information bases and the category of (algebraic) Scott domains. I...

متن کامل

Finite-Dimensional Hilbert Space and The Linear Inverse Problem

Linear Vector Space. A Vector Space, X , is a collection of vectors, x ∈ X , over a field, F , of scalars. Any two vectors x, y ∈ X can be added to form x+y ∈ X where the operation “+” of vector addition is associative and commutative. The vector space X must contain an additive identity (the zero vector 0) and, for every vector x, an additive inverse −x. The required properties of vector addit...

متن کامل

The Hilbert Space of Quantum Gravity Is Locally Finite-Dimensional

We argue in a model-independent way that the Hilbert space of quantum gravity is locally finite-dimensional. In other words, the density operator describing the state corresponding to a small region of space, when such a notion makes sense, is defined on a finite-dimensional factor of a larger Hilbert space. Because quantum gravity potentially describes superpositions of different geometries, i...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of Computer Science and Cybernetics

سال: 2016

ISSN: 1813-9663,1813-9663

DOI: 10.15625/1813-9663/15/4/7780