Finite crystallization in the square lattice

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Finite-size analysis of the hard-square lattice gas.

We investigate the hard-square lattice-gas model by means of transfer-matrix calculations and a finite-size-scaling analysis. Using a minimal set of assumptions we find that the spectrum of correction-to-scaling exponents is consistent with that of the exactly solved Ising model, and that the critical exponents and correlation-length amplitudes closely follow the relation predicted by conformal...

متن کامل

Low-Temperature Series for the Square Lattice Potts Model by the Improved Finite-Lattice Method

The low-temperature series are calculated for the free energy, magnetization and susceptibility in the Q-state Potts model on the square lattice, using the improved algorithm of the finite lattice method. The series are obtained to the order of z for each of Q = 5− 50, and the result of their Padé type analysis is compared with those of the large-Q expansion and the Monte Carlo simulations.

متن کامل

The square lattice shuffle

We show that the operations of permuting columns and rows separately and independently mix a square matrix in constant time.

متن کامل

Wideband Dispersion Compensation in Square Lattice Photonic Crystal Fibe

In this paper, a new structure is provided for the dispersion compensating photonic crystal fibers in order to broaden the chromatic dispersion and increase the dispersion compensating capability in a wide wavelength range. In the structure, putting a combination of circular holes and a star structure in the inner core clad causes the dispersion coefficient profile to be broadened, and addition...

متن کامل

The square lattice shuffle, correction

1. A CORRECTION Theorem 3.6 in [1] contains an error in the stated bound. As is argued above the theorem, the statistical distance to the uniform distribution decreases by a factor O ( (m/ log m)−1/2 ) = O ((log n)1/2n−1/4) for every two iterations. This implies that the bound obtained for Theorem 3.6 should read O ( n1− t−1 2 1 4 (log n) t−1 2 1 2 ) . I am grateful to Justin Holmgren for point...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Nonlinearity

سال: 2014

ISSN: 0951-7715,1361-6544

DOI: 10.1088/0951-7715/27/4/717