منابع مشابه
Finitary Lie algebras
An algebra is called finitary if it consists of finite-rank transformations of a vector space. We classify finitary simple and finitary irreducible Lie algebras over an algebraically closed field of characteristic 6= 2, 3.
متن کاملGradings on simple algebras of finitary matrices
We describe gradings by finite abelian groups on the associative algebras of infinite matrices with finitely many nonzero entries, over an algebraically closed field of characteristic zero.
متن کاملDomestic Canonical Algebras and Simple Lie Algebras
For each simply-laced Dynkin graph ∆ we realize the simple complex Lie algebra of type ∆ as a quotient algebra of the complex degenerate composition Lie algebra L(A) 1 of a domestic canonical algebra A of type ∆ by some ideal I of L(A) 1 that is defined via the Hall algebra of A, and give an explicit form of I. Moreover, we show that each root space of L(A) 1 /I has a basis given by the coset o...
متن کاملSimple Lie Algebras Which Generalize Witt Algebras
We introduce a new class of simple Lie algebras W (n, m) (see Definition 1) that generalize the Witt algebra by using " exponential " functions, and also a subalgebra W * (n, m) thereof; and we show each derivation of W * (1, 0) can be written as a sum of an inner derivation and a scalar derivation (Theorem. 2) [10]. The Lie algebra W (n, m) is Z-graded and is infinite growth [4].
متن کاملSemi-simple Lie Algebras and Their Representations
This paper presents an overview of the representations of Lie algebras, particularly semi-simple Lie algebras, with a view towards theoretical physics. We proceed from the relationship between Lie algebras and Lie groups to more abstract characterizations of Lie groups, give basic definitions of different properties that may characterize Lie groups, and then prove results about root systems, pr...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Algebra
سال: 1999
ISSN: 0021-8693
DOI: 10.1006/jabr.1999.7856