Finitary Group Cohomology and Group Actions on Spheres

نویسندگان

چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Group actions on homology spheres

This can be stated in a more symmetric manner. Let r be any positive integer not equal to 3. Then n acts freely and homologically trivially on Z r i ff n acts freely and homologically trivially on SL In fact, there is a one-to-one correspondence between such actions on U and such actions on S r. (The classification of such actions is discussed in w In addition the actions constructed have the p...

متن کامل

Pseudofree Group Actions on Spheres

R. S. Kulkarni showed that a finite group acting pseudofreely, but not freely, preserving orientation, on an even-dimensional sphere (or suitable sphere-like space) is either a periodic group acting semifreely with two fixed points, a dihedral group acting with three singular orbits, or one of the polyhedral groups, occurring only in dimension 2. It is shown here that the dihedral group does no...

متن کامل

Some Cyclic Group Actions on Homotopy Spheres

In [4J Orlik defined a free cyclic group action on a homotopy sphere constructed as a Brieskorn manifold and proved the following theorem: THEOREM. Every odd-dimensional homotopy sphere that bounds a para-llelizable manifold admits a free Zp-action for each prime p. On the other hand, it was shown ([3J) that there exists a free Zp-action on a 2n-1 dimensional homotopy sphere so that its orbit s...

متن کامل

Tetrahedra on deformed spheres and integral group cohomology

We show that for every injective continuous map f : S → R there are four distinct points in the image of f such that the convex hull is a tetrahedron with the property that two opposite edges have the same length and the other four edges are also of equal length. This result represents a partial result for the topological Borsuk problem for R. Our proof of the geometrical claim, via Fadell– Hus...

متن کامل

Jumps in Cohomology and Free Group Actions

A discrete group G has periodic cohomology over R if there is an element in a cohomology group, cup product with which induces an isomorphism in cohomology after a certain dimension. Adem and Smith showed if R = Z, then this condition is equivalent to the existence of a finite dimensional free-G-CWcomplex homotopy equivalent to a sphere. It has been conjectured by Olympia Talelli, that if G is ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Proceedings of the Edinburgh Mathematical Society

سال: 2008

ISSN: 0013-0915,1464-3839

DOI: 10.1017/s0013091507000430