Finding the likely behaviors of static continuous nonlinear systems
نویسندگان
چکیده
منابع مشابه
Predicting the Likely Behaviors of Continuous Nonlinear Systems in Equilibrium
This paper introduces a method for predicting the likely behaviors of continuous nonlinear systems in equilibrium in which the input values can vary. The method uses a parameterized equation model and a lower bound on the input joint density to bound the likelihood that some behavior will occur, such as a state variable being inside a given numeric range. Using a bound on the density instead of...
متن کاملPredicting the likely behaviours of continuous nonlinear systems in equilibrium
This paper introduces a method for predicting the likely behaviors of continuous nonlinear systems in equilibrium in which the input values can vary. The method uses a parameterized equation model and a lower bound on the input joint density. to bound the likelihood that some behavior will occur, such as a state variable being inside a given numeric range. Using a bound on the density instead o...
متن کاملexistence and approximate $l^{p}$ and continuous solution of nonlinear integral equations of the hammerstein and volterra types
بسیاری از پدیده ها در جهان ما اساساً غیرخطی هستند، و توسط معادلات غیرخطی بیان شده اند. از آنجا که ظهور کامپیوترهای رقمی با عملکرد بالا، حل مسایل خطی را آسان تر می کند. با این حال، به طور کلی به دست آوردن جوابهای دقیق از مسایل غیرخطی دشوار است. روش عددی، به طور کلی محاسبه پیچیده مسایل غیرخطی را اداره می کند. با این حال، دادن نقاط به یک منحنی و به دست آوردن منحنی کامل که اغلب پرهزینه و ...
15 صفحه اولFinding the Most Likely Trajectories of Optimally-Controlled Stochastic Systems
Optimal trajectories of deterministic systems satisfy Pontryagin’s maximum principle and can be computed efficiently. Related results for stochastic systems exist but they lack the simplicity and computational efficiency of the deterministic case. Here we show that a certain class of both discrete-time and continuous-time nonlinear stochastic control problems obey a classic maximum principle, i...
متن کاملStable Rough Extreme Learning Machines for the Identification of Uncertain Continuous-Time Nonlinear Systems
Rough extreme learning machines (RELMs) are rough-neural networks with one hidden layer where the parameters between the inputs and hidden neurons are arbitrarily chosen and never updated. In this paper, we propose RELMs with a stable online learning algorithm for the identification of continuous-time nonlinear systems in the presence of noises and uncertainties, and we prove the global ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Annals of Mathematics and Artificial Intelligence
سال: 1990
ISSN: 1012-2443,1573-7470
DOI: 10.1007/bf01531018