Filtered perverse complexes

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Canonical Models of Filtered A∞-algebras and Morse Complexes

In the book [6], the authors studied the moduli spaces of bordered stable maps of genus 0 with Lagrangian boundary condition in a systematic way and constructed the filtered A∞-algebra associated to Lagrangian submanifolds. Since our construction depends on various auxiliary choices, we considered the canonical model of filtered A∞-algebras, which is unique up to filtered A∞-isomorphisms. The a...

متن کامل

How perverse is TQFT?

In this talk we will introduce Jones polynomial and Khovanov's homology of a knot. These topological invariants are (conjecturally) related to perverse sheaves on Grassmannians. We will try to understand how, and how understanding that might lead to new developments in Topological Quantum Field Theory.

متن کامل

Perverse Sheaves on Grassmannians

We give a complete quiver description of the category of perverse sheaves on Hermitian symmetric spaces in types A and D, constructible with respect to the Schubert stratification. The calculation is microlocal, and uses the action of the Borel group to study the geometry of the conormal variety Λ.

متن کامل

PERVERSE SHEAVES AND coO - ACTIONS

where t· x denotes the action of t on x. The set Xw is known to be a locally-closed c* -stable algebraic subvariety of X isomorphic to an affine space. The pieces Xw form a cell decomposition X = UWEW XW ' W E W, the socalled Bialynicki-Birula decomposition. We assume this decomposition to be an algebraic stratification of X (the closure of a cell may not be a union of cells, in general). Let ....

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Mathematical Research Letters

سال: 1998

ISSN: 1073-2780,1945-001X

DOI: 10.4310/mrl.1998.v5.n1.a9