Field-induced ordering in critical antiferromagnets
نویسندگان
چکیده
منابع مشابه
Plaquette Ordering in SU(4) Antiferromagnets
We use fermion mean field theory to study possible plaquette ordering in the antiferromagnetic SU(4) Heisenberg model. We find the ground state for both the square and triangular lattices to be the disconnected plaquette state. Our mean field theory gives a first order transition for plaquette ordering for the triangular lattice. Our results suggest a large number of low lying states.
متن کاملOrdering in spatially anisotropic triangular antiferromagnets.
We investigate the phase diagram of the anisotropic spin-1/2 triangular lattice antiferromagnet, with interchain diagonal exchange J' much weaker than the intrachain exchange J. We find that fluctuations lead to a competition between (commensurate) collinear antiferromagnetic and (zigzag) dimer orders. Both states differ in symmetry from the spiral order known to occur for larger J', and are th...
متن کاملImpurity induced spin texture in quantum critical 2D antiferromagnets.
We describe the uniform and staggered magnetization distributions around a vacancy in a quantum critical two-dimensional S=1/2 antiferromagnet. The distributions are delocalized across the entire sample with a universal functional form arising from an uncompensated Berry phase. The numerical results, obtained using quantum Monte Carlo simulations of the Heisenberg model on bilayer lattices with...
متن کاملMagnetic-Field Induced Quantum Phase Transitions in Triangular-Lattice Antiferromagnets
Cs2CuBr4 and Ba3NiSb2O9 are magnetically described as quasi-two-dimensional triangular-lattice antiferromagnets with spin1 2 and 1, respectively. We show that both systems exhibit a magnetization plateau at one-third of the saturation magnetization Ms due to the interplay of spin frustration and quantum fluctuation. In Cs2CuBr4 that has a spatially anisotropic triangular lattice, successive mag...
متن کاملField-induced order and magnetization plateaux in frustrated antiferromagnets
We argue that collinearly ordered states which exist in strongly frustrated spin systems for special rational values of the magnetization are stabilized by thermal as well as quantum fluctuations. These general predictions are tested by Monte Carlo simulations for the classical and Lanczos diagonalization for the S = 12 frustrated square-lattice antiferromagnet.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Physical Review E
سال: 1999
ISSN: 1063-651X,1095-3787
DOI: 10.1103/physreve.59.2772